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Editor?’s foreword

‘Never has the CMES6 ventured so far east. Never before has the CMESS
left the mainland. And never have we had a meeting more memorable than
our visit to Memorial University in St. John’s, Newfoundland. Special touches
of Newfoundland hospitality have indelibly influenced those who were
ritually initiated as honorary "SCREECHERS".

We are especially appreciative for the excellent representation cn our
‘behalf by Ed llilliams. As our local organizer, Ed was instrumental in
arranging the most enjoyable social agenda as well as the facilities for
our profaessional agenda at Mamorial University.

David iWheeler, one of the group instrumantal in founding the CMESS,
announced that he was stepping down as chairman of the CMES6. David has
agreed to Jjoin the executive as past chairman in order that we may
continue to benefit from his advice and interest in the group.

The major lectures were presented by Ross Finney and Alan Schoenfeld.
‘Ross Finney kindly offered to present a lecture when the previously
arranged speaker withdrew at the last minute. Alan Schoenfeld delwered a
Joint lecture to the CMS and the CMESS.

Charies VUerhille
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Preface
Canadian Mathematics Education Study Group
Groupe canadien d'etude en didactique des mathematiques

The Study Group held its tenth annual meeting at Memorial
University from June 8 to 12, 1986, Travelling distance and CAUT
censure made this much the smallest of the Study Group's
meetings. But the thirty-one participents managed to assemble a
lively programme and to generate a comfortable working
atmosphere.

Working Groups, as always the mainstay of the programme,
this year covered Affective aspects of problem solving (led by
Frances Rosamond, San Diego, and Peter Taylor, Queen's). The
problem of rigour in mathematics teaching (led by Gila Hanna,
0ISE, and Lars Jansson, Maritoba), Microccmputers in teacher
education (led by Charles. Verhille, UNB) ané The role of the
microcomputer in promoting statistical thirking (led by Claude
Gaulin, Laval and Lionel Mendoza, Memorial). In spite of the
small numbers, each group managed to funcation and, miraculously,
to flourish. It is worth repeating here, though it has been said
in reports of earlier meetings, that the opportunity for a group
to work for 9 hours on a single topic contributes powerfully to
the productivity of the meetings and to the atmosphere of
collaboration rather than competition that prevades themn.

The principal guest speaker, Alan Schoenfeld (Berkley),
threw himself into all aspects of the conference and delivered a
dynamic address under the modest title of Some thought on problem
solving. The lecture, jointly sponsored by the CMS Education
Committee, gave extremely good value, being full of practical
commonsense, critical analyses, cogent research results, and
provocative speculation. Ross Firney (MIT), generously stepping
in at the last minute to replace an advertised speaker, gave
particpants several glimpses of the material collected by UMAP
and COMAP, Harold Paddock (Memorial) refreshed the meeting with a
witty and wide~ranging talk given from the prospective of a
linguist and a poet on Natural language and mathematics in human
evolution.

Other sessions included reports on the Second International
Mathematics Study and the ICMI study on the impact of computers
and informatics on the teaching of mathematics. Claude Janvier
(UQAM) reviewed some of the research on representation, untaken
by him and his colleagues. Several members gave brief surveys of
the research activity in mathematics education in their
provinces, and the final evening was rounded off with a
dramatised reading of extracts from Lakatos' Proofs and
ref . _ations.

The local organizer, Ed Williams, by adding a banquet, a bus
trip and (opportunistically) a run up Signal Hill, ensured that
all the participants came away with pleasant memories of the host
province, its capital, and its university.

David Wheeler
Chairman
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IN MEMORIAM OIETER LUNKENBEIN

I would like us to use this opportunity to pause for a fuw
minutes in order to pay tribute to one of our very dear
colleagues: Dieter Lunkenbein, who was still among us at our
conference last year and who died on last September l1ilth.

I had the chance to know Dieter and to start working with
him shortly after his arrival to Canada in 1968, at the time he
accepted a position as a research assistant to Professor Zoltan
P, Dienes in Sherbrooke, Que. He was initially supposed to stay
a few years in our country and then to return to Germany, his
native land. But what happened is that he and his family decided
to stay and live in Sherbrooke, where he had spent the last 17
years of his life. After taking his Ph.D. in mathemntics
education at Laval in the early 70s, he became the inspiring
leader of a group of mathematics educators at the University of
Sherbrooke, as well as a very active collaborator to the Quebec
Ministry of Educatioa and to the three major Quebec mathematics
teachers associations.

In 1977, Dieter Lunkenbein was present at Kingston, Ontario,
when the meeting that led to the creation of our Study Group took
place. Since then he has been a regular participant to our
meetings, making a remarkable contribution as a leader or a
collaborator of many groups, particularly those on the
development of geometrical thinking at the Elementary level, on
research in mathematics education and on children's "errors" in
mathematics.

In 1979, Dieter received the "Abel Gauthier Prize" in
recognition for his exceptional contribution to mathematics
education in Quebdec. Besides his involvement in Canada, Dieter
has also been quite active at the international level during the
last ten years. In 1982, he was elected President of the
"Commission Internationale pour 1'Etude et 1'Amelioration de
1'Enseignement de la Mathematique" in Furope. But unfortunately,
he had to resign from that position before the end of his
mandate, after having gone through a heart operation.

Last year, Dieter had apparently recovered so well that in
June he accepted a position as assistant dean of the Faculty of
Education at the University of Sherbrooke, and that in July he
participated in an international conference in Bielefeld,
Germany. But two months later, alas, we heard the tragic news of
his death at 48 years of age, at an age he s:zill had so much to
offer and to contribute.

To all those who have known Dieter Lunkenbein, his death
means a great loss. On the one hand, we have lost a man with a
rich personality and with.remarkable human qualities: Dieter was
friendly, generous, modest, and he had a great respect for
others. On the other hand, we have lost a colleague with
outstanding professional qualities: Dieter was a hard worker,

with high standards of rigor and integrity, ever searching for
truth and strongly dedicated to his work in mathematics
education, Let us have good thoughts for him!

Claude Gaulin 8
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CONFESSIONS OF AN ACCIDENTAL
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Confessions of an Accidental Theorist

David Wheeler had both thecretical and pragmatic reasons for inviting
mea to write this article. On the theoretical side, he noted that my ideas on
"understanding and teaching the nature of mathematical thinking” have taken
some curious twists and turns over the past decade. Originally inspired by
Polya's ideas and intrigued by the potential for implementing them using the
tools of artificial intelligence and information-processirg psychology, | set out to
develop prescriptive models of heuristic problem solving -- models that included
descriptions of how, and when, to use Pdlya's strategies. (In moments of verbal
excess | was heard to say that my research plan was to "understand how
competent problem solvers solve problems, and then find a way to cram that
knowledge down students’ throats.”) Catch me talking today, and you'll hear
me throwing about terms like metacognition, belief systems, and "culture as the
growth medium for cognition;” there's little or no mention of prescriptive models.
What happened in between? How were various ideas conceived, developed.
modified, adapted, abandoned, and sometimes reborn? It might be of interest,
suggested David, to see where the ideas came from. With regard to pragmatic
issues, David was blunt. Over the past decade I've said a lot of stupid things.
To help keep others from re-inventing square theoretical or pedagogical
wheels, or to keep people from trying to ride some of the square wheels I've

developed, he suggested, it might help if | recanted in public. So here goes. . .

The story begins in 1974, when 1 tripped over Pdlya's marvelous little
volume How to Solve It. The book was a tour de force, a charming expositicin

of the problem solving introspactions of one of the century s foremost

11




Confessions,

mathematicians. (If you don't own a copy, you should.) In the spirit of

. Descartes, who had, three hundred years earlier, attempted a similar feat in the

Rules for the Direction of the Mind, Pélya examined his own thoughts to find
usefui patterns of problem solving behavior. The result was a general
description of problem solving processes: a four-phase model of problem
solving (understanding the problem, devising a plan, carrying out the plan,
looking back), the details of which included a range of problem solving
hauristics, or rules of thumb for making progress on difficult problems. The book
and Polya's subsequent elaborations of the heuristic theme (in Mathematics
and Plausible Reasoning, and Mathematical Discovery) are brilliant pieces of

insight and mathematical exposition.

A young mathematician only a few years out of rraduate school, | was
completely l;owled over by the book. Page after page, Pélya described the
problem solving techniques that he used. Though | hadn't been taught them, |
too used those techniques; I'd picked them up then pretty much by accident, by
virtue of having solved thousands of problems during my mathematicai career
(That is, I'd been "trained" by the discipline, picking up bits and pieces of
mathematical thinking as | developed). My experience was hardly unique, of
course. In my excitement | joined thousands of mathematicians who, in reading
Padlya's works, had the same thrill of recognition. In spirit ! anlisted in the army
of teachers who, inspired by Pdlya's vision, decided to focus on- teaching their
students to think mathe:matically instead of focusing merely on the mastery of

mathematical sub;sct matter.

9 miore 7iceurate, | thought about entisting in that army. Excited by

m,’ » sought out some problem-solving experts, mathematics faculty

12
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who coached students for the Putnam exam or for various Olympiads. Their
verdict was unanimous and unequivocal: Pélya was of no use for budding
young problem-solvers. Students don't learn to solve problems by reading
Pdlya's books, they said. In their experience, students learned to solve
problems by (starting with raw talent and) soiving lcts of problems. This was
troubling, so | looked elsewhere for (either positive or negative) evidence. As
noted above, | was hardly the first Pélya enthusiast: By the time | read How to
Soive It the math-ed literature was chock full of studies designed to teach
problem-solving via heuristics. Unfortunately, the results -- whether in first
grade, algebra, calculus, or number theory, to name a few -- were all
depressingly the same, and confirmed the statements of the Putnam and
Olympiad frainers. Study after study produced "promising” resuits, where
teacher and students alike were happy with the instruction (a typical
pnenomenon when teachers have a vested interest in a new program) but

where there was at best marginal evidence (ii any!) of improved problem

solving performance. Despite all the enthusiasm for the approach, there was no

clear evidence that the students had actually learned more as a result of their

heuristic instruction, or that they had learred any general problem solving skills

that transferred to novel situations.

Intrigued by the contradiction -- my gut reaction was still that Pélya was
on to socmething signiiicant -- | decided to trade in my mathemadcian's cap for a
mathernatics educaior's and explore the issue. Well, not exactly a straight

mainematics educator's; as | said above, math ed had not produced much that

was encouraging on the problem solving front. | turned to a different field, in the

hope of blending its insights with Pélya's and those of mathematics educators.

13
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The first task | faced was to figure out why Pélya's strategies didn't work.

If | succeeded in that, the next task was to make them work -- to characterize the
strategies so that students could learn to use them. The approach | took was
inspired by classic problem solving work in cognitive science and artificial
intelligence, typified by Newell and Simon’s (1872) Human Problem Solving. In
the book Newell and Simon describe the genesis of a computer program called
General Problem Solver (GPS), which was developed to solve problems in
symbolic logic, chess, and "cryptarithmetic” (a puzzle domain similar to
Cryptograms, but with letters standing for numbers instead of letters). GPS
played a decent game of chess, soived cryptarithmetic problems fairly well. and
managed to prove almost all of the first 50 theorems in Russell and Whitehead’s
Principia Mathematica -- all in all, rather convincing evidence that its problem

solving strategies were pretty solid.

Where did those strategies come from? In short, they came from detailed
observations of people solving problems. Newell, Simon, and bolleagues
recorded many people’s attempts to solve problems in chess, cryptarithmetic,
and symbolic logic. They then explored those attempts in detail, looking for
uniformities in the problem solvers' behavior. If they could find those
regularities in people’s behavior, describe those regularities precisely (i.e. as
Computer programs), and get the programs to work (i.e. to solve problems) then
they had pretty good evidence that the strategies they had characterized were
useful. As noted above, they succeeded. Similar techniques had been used in
other areas: for exainple, a rather simple program called SAINT (for Symbolic
Automatic INTegrator) solved indefinite integrals with better facility than most

M.LT. freshmen. In all such cases, Al produced a set of prescriptive procedures

14
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-- problem solving methods described in such detail that a machine, following

their instructions, could obtain pretty spectacular results.

It is ironic that no one had thought to do something similar for human

problem solving. The point is that one could turn the man-machine metaphcr
back on itself. Why not make detailed observations of expert human problem
solvers, with an ¢ye towards abstracting reguilarities in their behavior --
regularities that could be codified as prescriptive guides to human problem

solving? No slight to students was intended by this approach, nor was there

any thought of students as problem solving machines. Rather, the idea was to

pose the problem from a cognitive science perspective: "What level of detail is

needed so that students-can actually use the strategies one believes to be

useful?” Methodologies for dealing with this question were suggested by the

methodologies used in artificial intelligence. One could make detailed

observations of individuals solving problems, seek regularities in their problem

solving behavior, and try to characterize those regularities with enough

precision, and in enough detail, so that students could take those

characterizations as guidelines for problem solving. That's what | set out to do.

The detailed studies of problem solving behavior turned up some results

pretty fast. In particular, they quickly revealed one reason that attempts to teach

problem solving via heuristics had failed. The reason is that Pdlya's heuristic

strategies weren't really coherent strategies at all. Pdlya's characterizations

were broad and descriptive, rather than prescriptive. Professional

mathematicians could indeed recognize them (because they knew them, albeit

implicitly), but novice problem solvers could hardly use them as guides to

productive problem solving behavior. In short, Pdlya's characterizations were

15




Confessions,
labels under which families of related strategies were subsumed. There isn't
much room for exposition here, but one example will give the flavor of the

analysis. The basic idea is that when you look closely at any single heuristic

"strategy,” it explodes into a dozen or more similar, but fundamentally different,

problem-solving techniques. Consider a typical strategy, "examining special
cases:”

To better understand an unfamiliar problem, you may wish to
exemplify the problem by considering vérious special cases. This

may suggest the direction of, of perhaps the plausibility of, a

solution.
Now consider the solutions to the following three problems.

Problem 1. Determine a formula in closed form for the series

n
2 K/(k+1)!
i=1

Problem 2. Let P(x) and Q(x) be polynomials whose coefficients are the
same but in "backwards order:"

P(x) = ag + a1x + aox2 + ... apx" , and

Q(x) = @n + an-1X + an.ox2 + ... apxn.
What is the relationship between the roots of P(x) and Q(x)? Prove your

answer.

16
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. Confessions,
Problem 3. Let the real numbers ag and a1 be given. Define the
sequence fap} by

an=1/2 (apn.2 +apn.1) foreachn=2.

Does the sequence {ap} converge? If so, to what value?

I'll leave the details of the solutions to you. However, the following
observations are important. For problem 1, the speciai cases that help are
examining what Happens when where the integer parameter n takes on the
values 1, 2, 3, . . . in sequence; this suggests a general pattern that can be
confirmed by induction. Yet if you try to use special cases in the same way on
the-second problem, you may get into trouble: Looking at values n=1, 2, 3, . ..
can lead to a wild goose chase. It turns out that the right special cases of P(x)
and Q(x) you to look at for problem 2 are easily factorable polynomials. If, for
example, you consider

Px)=(2x + 1) (x +4) (3x - 2),
you will discover that its "reverse,” Q, is easily factorable. The roots of the P and
Q are easy to compare, and the result (which is best proved another way) is
obvious. And again, the special cases that simplify the third problem are
different in nature. If you choose the values ag=0 and a1=1, you can see what
happens for that particular sequence. The pattern in that case suggests what
happens in general, and (especiélly if you draw the right picture!) leads to a

solution of the criginal problem.

Each of these problems typifies a large class of problems, and

exemplifies a different special cases strategy. We have:

17
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Strategy 1, When dealing with problems in which an integer parameter n
plays a prominent role, it may be of use to examine values of n=1, 2, 3, . .

. in sequence, in search of a pattern.

Strategy 2, When dealing with problems that concern the roots of

polynomials, it may be of use to look at easily factorable polynomials.

Strategy 3. Wheri dealing with problems that concern sequencas or
series that are constructed recursively, it may be of use to try initial values
of 0 and 1 -- if such choices don't destroy the generality of the processes

under investigation.

Needless to say, these three strategies hardly exhaust "special cases."
At this level of analysis -- the level of analysis necessary for implementing the
strategies -- one could find a dozen mora. This is the case for almost all of
Pélya's strategies. In consequence the two dozen or so "powertul strategies” in
How to Solve It are, in actuality, a collection of two or taree hundred less
"poweriul,” but actually usable strategies. The task of teaching problem solving
via heuristics -- my original goa! --thus expénded to (1) explicitly identifying the
most frequently used techniques from this long list, (2) characterizing them in
sufficient detail so that students could use them, and (3) providing the

appropriate amount and degree of iraining.

[Warning: It is easy to underestimate both the amount of detail and
training that are necessary. For example, to execute a moderately complex
"strategy” like "exploit an easier related problem” with success, you have to (a)

think to use the strategy (non-triviall); (b) know which version of the strategy to

18
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use; (c) generate appropriate and potentially useful easier related problems;
(d) make the right choice of related problem; (e) solve the problem; and (f) find a
way to exploit its solution to help solve the original problem. Students need

instruction in all of these.]

Well, this approach made progress, but it wasn't good enough. Fleshing
out Pdlya’s strategies did make them implementable, but it revealed a new
problem. An arsenal of a dozen or so powerful techniques may be manageable
in problem solving. But with all the new detail, our arsenal comprised a couple
of hundred problem solving techniques. This caused a new.problem, which I'l

introduce with an analogy.

A number of years ago, | deliberately put the problem

as the first problem on a test, to give my students a boost as they began the
exam. Aftar all, a quick look at the fraction suggests the substitution u= x2 - 9,
and this substitution knocks the problem off in just a few seconds. 178 students
took the exam. About half used the right substitution and got off to a good stén.
as | intended. However, 44 of the students, noting the factorable denomirator in
the integrand, used partial fractions to express x/x2-9 in the form [A/%x-3 + B/x+3)
-- vorrect but quite time-consuming. They didn't do too well ¢n the exam. And
17 students, noting the (u2 - a2) form of the denominator, worked the problem
using the substitution x = 3sin6. This too yields the right answer -- but it was

even more time—consﬁming, and the students wound up so far behind that they

hombed the exam.




Confessions,

Doing well, then, is based on more than "knowing the subject matter;" it's
based on iknowing which techniques to use and when. |f your strategy choice
isn't good, you're in trouble. That's the case in techniques of integration, wtien
there are only a dozen techniques and they're all algorithmic. As we've seen,
heuristic techniques are anything but algorithmic, ard they're much harder to
master. In addition, there are hundreds of them -- so strategy selection
becomes even more important a factor in success. My point was this. Knowing

the strategies isn't enough. You've got to know when to use which strategies.

As you might expect by now, the Al metaphor provided the basic

apbroach. | observed good problem solvers with an eye towards replicating

their heuristic strategy selection. Generalizing what they did, | came up with a
prescriptive scheme for picking heuristics, called a "managerial strategy.” It told
the student which strategies to use, and when (unless the student was sura he
had a better idea). Now again, this approach is not quite as silly as it sounds.
Indeed, the seads of it are in Pdlya ("First. You have to understand the
problem.”). The students weren't forced to follow the managerial strategy like
little automata. But the strategy suggested that heuristic techniques for
understanding the problem should be used first, planning heuristics next,
exploration heuristics in a particular order (the metric was that the further the
exploration took you from the original problem, the later you should consider it),
and so on. In class we talked about which heuristic technique we might use at
any time, and why. Was the approach reductive? Maybe so. But the bottom line
is that this combination of making the heuristics explicit, and providing a

managerial strategy for students, was gloriously successful.
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teachers (and often as researchers) we ook at a very narrow spectrum of
student behavior. Generally spéaking, we cnly see what studerts produce on
tests; that's the product, but focusing on ti:e preduct leaves the procass by
which it evolved largely invisible. (There's a suhsiantial difference between
watching a 20-minute videotape of a student viorking a probiem and reading
the page or two of "solution” that student produced in those 20 minutes. The
difference can be mind boggling.) In class, cr in office hours, we have
conversations with the students, but the conversations are directed toward a
goal - explaining something the student comes prepared to understand, and
knows is coming. The student is primed for what we have to say. And that's the
point. When we give students.a calculus test and there's a max-min problem in
it, students knew it's a max-min problem. They've just finished a unit on max-
min problems, and they expect to see a max-min problem on the exam. In other
words, the context tells the students what mathematics to use. We get to see
them at their very best, because (a) they're prepared, and (b) the general
context puts them in the rigint ballpark and tells them what srocedures to use.

By way of analogy, you don't discover whether kids can speak grammatically (or

think on their feet) when you given them a spelling test, after they've been given

the list of words they'll be tested on. (Even when | taught the problem solving
ciass, ' was showing students techniques that they knew were to be used in the
context of the problem solving class. Hence they came to my final prepared to

use those techniques.)

In my office, problems come out of the blue and the context doesn't te!l
students what methods are appropriate. The result is that | get to see a very
different kind of behavior. One problem used in my research, for example, is the

following:

22
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Eroblem 4, Three points are chosan on the circumference of a circle of
radius R, and the triangle with those points as vertices is drawn. What
choice of points results in the triangle with largest possible area? Justify

your answer as well as you can.

Though there are clever solutions to this problem (see below), the fact is
that you can approach it as a standard multivariate max-min probiem. Virtually
none of my students (who had finished 3rd-semester calculus, and who knew
more than enough mathematics to knock the problem off) approached it that

way. One particular pair of students had just gotten A's in their 3rd-semester

calculus class, and each had gotten full credit on a comparably difficult problem
on their exam. Yet when they workad on this problem they jumped into another
(and to me, clearly irrelevant) approach altogether, and persisted at it for the full
amount of allotted timg. When they ran out of time, | asked them where they
were going with that approach and how it might help them. They couldn't teil
me. That solution attempt is best described as a twenty-minute wild éoose

chase.

Most of my videotapes showed students working on problems that they

"knew" enough mathematics to solve. Yet time and time again, students never

got to use their knowledge. They read the problem, picked a direction (often in
just a second or two), and persevered in that direction no matter what. Almost
sixty percent of my tapes are of that nature. But perhaps the most embarrassing

i' ‘ of the tapes is one in which | recorded a student who had taken my problem
i solving course the year before.
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There is an elegant solution to Problem 4, which goes as follows.
Suppose the three vertices are A, B, and C. Hold A and B fixed, and ask what
choice of C gives the largest area. It's clearly when the height of the triangle is
maximized -- when the triangle is isosceles. So the largest triangle must os
isosceles. Now you can either maximize isosceles triangles (a one-variable
calculus problem), or finish the argument by contradiction. Suppose the largest
triargle, ABC, isn™ equilateral. Then two sides are unequal; say AC = BC. If
that's the case, however, the isosceles triangle with base AB is larger than ABC

-- a contradiction. So ABC must be equilateral.

The student sat down to work the problem. He remembered that we'd
worked it in class the previous year, and that there was an elegant solution. As
a result, he approached the problem by trying to so something clever. In an
attempt to exploit symmetry he changed the problem he was working on
(without acknowledging that this might have serious consequences). Then,
pursuing the goal of a slick solution he missed leads that clearly pointed to a
straightforward solution. He also gave up potentially fruitful approaches that
were cumbersome because "there must be an easier way." In short, a cynic
would argue that he was worse off after my course than before. (That's how | felt

that afternoon.)

In any case, | drew two morals from this kind of experience. The first is
that my course, broad as it was, suffered from the kind of insularity | discussed
above. Despite the fact that | was teaching "general problem solving
strategies,” | was getting good results partly because | had narrowed the
context: students: knew they were supposed tu be using the strategies in class,

and on my tests. If | wanted to affect the students' behaviorin a lasting way,
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outside of my classroom, | would have to do something different. [Note: | had
plenty of testimonials from students that my course had "made me a much better
problem solver,” "helped me do much better in all of my other courses,” and
“changed my life." I'm not really sanguine about any of that.] Second and more
important, | realized that there was a fundamental mistake ir the approach | had
taken to teaching problem solving -- the idea that | couid, as | put it so
indalicatel)_l in the first paragraph of this paper, cram problem solving

knowledge down my students’ throats.

That kind of approach makes a naive and very dangerous assumption
about students and i@arning. It assumes, in 3ssence, that each student comes
to you as a tabula rasa, that you can write you problem solving "message” upon
that blank slate, and that the message will "take.” And it just ain't so. The
students in my problem solving classes were the successes of our system.
They were at ‘4amilton College, at Rochester, or at Berkeley because they were
good students; they were in a problem solving class (which was known as a
xiller) because they liked mathematics and did pretty well atit. They come to
the class with well engrained habits - the very habits that have gotten them to
the class in the first place, and accounted for their success. |ignore all of that
(well, not really; but a brief caricature is all I've got room for) and show them
"how to do it right." And when they leave the classroom and are on their own...
well, let's be realistic. How could a semester's worth of training stack up against
an academic lifetime's worth of experience, especially if tne course ignores that
experience? (Think of what it takes to retrain a self-taught musician or tennis
player, rather than than teach one from scratch. O habits die very very hard, if

" they die at all.)
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Well, the point is clear. If you're going to try to affect students’
mathematical problem solving behavior, you'd better understand that behavior.
That effort was the main thrust of what (linear type that | am) VIl call phase 2.
Instead of trying te do things to (and with) students, the idea was to understand
what went on in their heads when they tried to do mathematics. Roughly
speaking, the idea was this. Suppose | ask someone to solve some
mathematics problems ior me. For the sake of a permanent record, | videctape
the roblem solving session (and the person talks out loud as he or she works,

giving me a verbal "trace” as well.). My goal is to understang what the persor

did, why he or she_did.it,.and_how those actions.contributed to his-or her s

success or failure at solving the problem. Along the way I'm at libertv to ask any
questions | want, give any tests that seem relevant, and perform any
\reasonable) experiments. What do | have o look at, to be reasonably confident
that I've focused on the main determinant of behavior, and on what caused

success or failure?

The details of my answer are xvi+409 pages long. The mascchistic
reader may find them, as well as the details of the brief anecdotes sketched
above, in my (1985) Mathematical Problem Solving. In brief, the book
suggested that if you're going to try to make sense of what peopie do wken thav

do mathematics, you'd better look at:

A. "Cognitive resources,” one's basic knowledge of mathematical facts
and procedures stored in LTM (long term memcry.) Most of modern
psychology, which studies what's in a person’s head and how that

knowledge is accessed, is relevant here.
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B. Problem solving strategies or heuristics. I've said enough about these.

7

C. Executive or "Control” behavior. [For the record, this behavior is often
referred to as "metacognition.”] | discussed this above as well. It's not
just what you know (A+B above), it's how you use it. The issue in the
book was how to malke sense of such things. It's tricky, for the most
important thing in a problem solving session may be something that
doesn't take place -- asking yourself if it's really reasonable to do

something, and thereby forestalling a wild goose chase.
D. Belief systems. | haven't mentioned these yet, but | will now.

Beliefs have to do with your mathematical weltanschauung, or world
view. The idea is that your sense of what mathamatics is all about will
determine how you approach mathematical problems. At the joint CMS/CMESG
meetings in June 1986, Ed Williams told me a story that illustrates this category.
Williams was one of the organizers of a problem solving contest which

contained the following problem:

"Which fits better, a square peg in a round hole or a round peg in a

square hole?"

Since the peg-to-hole ratio is 2/r (about .64) in the former case and n/4
(about .79) in the latter, the answer is "the round peg.” (Since the tangents line
up in that case and not in the other, there's double reason to choose that

answer.) It seems obvious that you have to answer the question by invoking a
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computation. How else, except with analytic support, can you defend your

claim?

It may be obvious to us that an analytic answer is called for, but it's not at
all obvious to students. More than 300 stuc ’s -~ the cream of the crop --
worked the problem. Most got the right answe., justifying it on the basis of a
rough sketch. Only four students out of more than 300 justified their answer by
comparing areas. (I can imagine a student saying "you just said to say which fit
better. You didn't say to prove it.") Why? I'm sure the students could have
done the calculations. They didn't think to, because they didn't realize that
justifying one’s answer is a necessary part of doing mathematics (from the

mathematician's point of view).

Fer the sake of argument, I'm going to state the students’ point of view.(as

described in the previous paragraph) in more provocative form, as a belief:

Belief 1: If you're asked your opinion about a mathematical question, it
suffices to give your opinion, although you might back it up with evidence
if that evidence is readily available. Formal proofs or justifications aren’t
necessary, unless you're specifically asked for them -- and that's only

because you have to play by the rules of the game.
We've seen the behavioral corollary of this belief, as Williams described it.

Unfortunately, this belief has lots of company. Here are two of its friends, and

their behavioral corollaries.
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Belief 2; All mathematics problems can be solved in ten minutes or less, if
you understand the material. Corollary: students give up after ten minutes

of work on a "problem.")

Belief 3;. Only geniuses are capable of discovering, creating, and
vnderstanding mathematics. Corollary: students expect to take their
mathematics passively, memorizing without hope or expectation of

understanding.

An anecdote introduces one last belief. A while ago | gave a talk
describing my research on problem solving to a group of very talented
undergraduate science majors at Rochester. | asked the students to solve
Problem 5, given in Fig. 1. The students, working as a group, generated a
correct proof. | wrote the proof (Fig. 2) on the board. A few minutes later | gave

the students Problem 6, given in Fig. 3.
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In the figure below, the circle with center C is
tangent to the top and bottom lines at the points
P and Q respectively.

a. Prove that PV = QV.

b. Prcve that the line segment CV bisects angle PVQ.
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Proof;

Draw in the line segments CP, CQ, and CV. Since CP and CQ are
radii of circle C, they are equal; since P and Q arz oints of tangency,
angles CPY and CQV are right angles. Finally since CV=CV, triangles
.CPV and CQV are congruent.

a. Corresponding parts of congruent triangles are congruent, so
PV =QV.

b. Corresponding parts of congruent triangles are congru=nt, so
angle PVC = angle QVC. Thus CV bisects angle PVQ.

- Fig. 2 --
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You are given two intersecting straight lines and

a point P marked on one of them, as in the figure
below. Show how to construct, using straightedge
and compass, a circle that is tangent to both lines
and that has the point P as its point of tangency to
the top line.

-- Fig. & --
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Studenis-came to be board and made the following conjectures, in order:

a. Let Q be the point on the bottom line such that QV = PV. The center of

the desired circle is the midpoint of line segment PQ. (Fig. 4a).

b. Let A be the segment of the arc with vertex V, passing through P, and
bounded by the two lines. The center of the desired circle is the
midpoint of the arc A. (Fig. 4b).

c. Let R be the point on the bottom line that intersects the line segment
perpendicular to the top line at P. The center of the desired circle is the

midpoint of line segment PR. (Fig. 4c).
d. Let L1 be the line segment perpendicular to the top line at P, and Lo

the bisector of the angle at V. The center of the desired circle is the
point of intersection of Ly and Lo. (Fig. 4d).
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—~Fig. 4~

Students’ conjectured solutions
(Shert horizontal lines denote midpoints.)

The proof that the students had generated -- which both provides the
answer and rules out conjectures a, b, and ¢ -- was still on the board. Despite
this, they argued for more than ten minutes about which construction was right.
The argument was on purely empirical grounds (that is, on the grounds of which
construction looked right), and it was not resolved. How could they have this
argument, with the prbof su ' on the board? | believe that this scene could only
take place if the students simply didn't see the proof problem as being relevant
to the construction problem. Or again in provocative form,
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Beliet 4: Formal matiiematics, and proof, have nothing to do with
discovery or irivention. Corollary: the results of formal mathematics are

ignored] vinen students work discovery problems.

Since we're in "brief survey mode,” | don't want to spend too much time
on beliefs per se. | think the point is clear. ii you want to understand students'
mathematical behavior, you have to know more than what they "know.” These
students "knew" plane geometry, and how to write proofs; yet they ignored that
knowledge when working construction problems. Understanding what went on -
in their heads was (and is) tricky business. As | said, that was the main thrust of

phase 2.

But enough cf that; we're confronted with a real dilernma. The behavior |
just described turns out to be almost universal. Undergraduates at Hamilton
College, Rochester, and Berkeley all have much the same mathematical world
view, and the (U.S.) National Assessments of Educational Progresé indicate
that the same holds for high school students arounc the country. How in the
world did those students develop their bizarre sense of what mathematics is all

about?

The answer, of course, lies in the students' histories. Beliefs about
mathematics, like beliefs about anything else -- race, sex, and politics, to name
a few -- are shaped by une's environment. Your develop your sense of what
something is all about (be that something mathematics, race, sex, or politics) by
virtue of your experiences with it, within the context of your social environment.
Yau may pick up your culture's values, or rebel against them -- but you're

shapew by them just the same.
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Mathematics is a formal discipline, to which you're exposed mostly in
schools. So if you want to see where kids’ views about mathematics are
shaped, the first place to go is into mathematics classrooms. | packed up my
videotape equipment, and off | went. Some of the details ot what | saw, and
how [ interpreted it, are given in the in-press articles cited in the references. A

thumbnail skeicih of some of the ideas follows.

Borrowing a term from anthropologists, what | observed in‘mathematics
classes was the practice of schooling -- the day-to-day rituals and interactions
that take place in mathematics classes, and (de facto ) define what it is to do
mathematics.” One set of practices 1as to do with homework and testing. The
name of the game in schoo! mathematics is "mastery:* Students are supposed
to get their facts and procedures down cold. That means th.at most hemework
problen:s are trivial variants of things the students have already learned. For
example, one "required” construction in plane geometry .(which students
memorize) it to construct a line through a given point, parallel to a given lina. A
homework assignment given a few days later contained the following problem:
Given a point on a side of a triangle, construct a line through that point parallel
to the base of the triangle. This isn't a problem; it's an exercise. It was one of
27 "problems" given that night; the three previous assignments had contained
28, 45, and 18 problems reSpectively.. The test on locus and constructions
contained 25 problems, and the students were expected to finish (and check!)
the test in 54 minutes -- an average of two minutes and ten seconds per

problem. lIs it any wonder that students come to believe that any problem can

be solved in ten minutes or less?
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I also note that the teacher was quite explicit about how the students
should prepare for the test. His advice -- well intantioned -- to tha students
when they asked about the exam was as follows: "You'll have to know all your
constructions cold so that you don't spend a lot of time thinking about them.” In
fact, he's right. Certain skills should be automatic, and you shouldn't have to
think about them. But when this is the primary if not the only message that

students get, they abstract it as a belief: mathematics is mostly, if not all,

memorizing.

Other aspects of what I'll call the "culture of schooling” shape students'
view of what mathematics is all about. Though there is now a small movement
toward group problem solving in the schools, mathematics for the most part is a
solitary endeavor, with individual students working alone at their desks. The

message they get is that mathematics is a solitary activity.

They also gat a variety of messages about the nature of the mathematics
itself. Many word problems in school tell a story that requires a straightforward
calculation (for example, "John had twenty;eight candy bars in seven boxes. If
each box contained the same number of candy bars, how many candy bars are
there in each box?"). The students learn to read the story, figure out which
calculation is appropriate, do the calculation, and write the answer. An oft-
quoted problem on the third National Assessment of Educational Progress
(secondary school mathematics) points to the dangers of this approach. It
asked how many buses were needed to carry 1128 soldiers to their training site.
if each cus holds 36 soldiers. The most frequent response was "31 remainder

12" -- an answer that you get if you follow the practice for word problems just
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described, and ignore the fact that the story (ostensibly) refers to a "real world"

situation.

Even when students deal with "applied" problems, the mathematics that
they learn is generally clean, stripped of the complexities of the real world.
Such problems are usually cleaned up in advance -- simplified and presented
in such a way that the techniques the students have just studied in ciass will
provide a "solution.” The result is that the students don't learn the delicate art of
mathematizing -- of taking complex situations, figuring out how to simplify them,
and choosing the relevant mathematics to do the task. Is it any surprise that
students aren't good at this, and that they don't “think mathematically” in.real

world situations for which mathematics would be useful?

I'm proposing here that thorny issues like the "transfer problem” (why
students don't transfer skills they've learnzd in one context and use them in
other, apparently related ones) and the failure of a whole slew of curricu_lum
reform movements (e.g. the "applications” movement a few years back) have, at
least in part, cultural explanations. Suppose we accept that there is such a
thing as school culture, and it operates in ways like those described above.
Curricular reform, then, means taking new curricula (or new ideas, or...) and
shaping them so that they fit into the school culture. In the case of
"applications,” it means cleaning problems up so that they're trivial little
exercises - and when you do that, you lose both the power, and the potential
transfer, of the applications. In that sense, the culture of schooling stands as an
obstacle to school reform. Real curricular reform, must in part involve a reform

of school culture. Otherwise it doesn't stand a chance.
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Waell, here | am arguing away in the midst of - as though you naven't
guessed -- phase 3. There are two main diiferences from phase 2. The first is
that I've moved from taking snapshot views of students (characterizing what's in
a student's head when the student sits down to work some pro~lems) to taking a
motion picture. The question I'm exploring now is: how did what's in the
student's head evolve the way it did? The second is that the explanatory
framework has grown larger. Though | still worry about "what's going on in the
kid's head,” | look outside for some explanations -- in particular, for cultural

ones.

And yet plus ¢a change, plus ¢a reste le méme. | got into this business
because, in Halmos's phrase, | thought of problem solving as "the heart of
mathematics” ~ and | wanted students to have access to it. As often happens, |
+ discovered that things were far more complex than | imagined. At the inicro-
level, explorations of students' thought processes have turned out to be much
more detailed (and interesting!) than | might have expected. | expect to spend a
substantia! part of the next few years looking at videotapes of students learning
about the propertias of graphs. Just how do they make sense of mathematical
ideas? Bits and pieces of "the fine structure of cognition” will help me to
understand students’ mathematical understandings. At the macro-level, I'm
no;.v much more aware of knowledge acquisition as a function of cultural
context. That means that | get to play the role of amateur anthropologist -- and
that in addition to collaborating with mathematicians, mathematics educators, Al
researchers, and cognitive scientists, | now get to collaborate with
anthropologists and social theorists. That's part of the fun, of course. And that's
only phase 3. | can't tell you what phase 4 will be like, but there's a good

chance there will be one. Like the ones that preceded it, it will be based in the

39




Cenfessiuns,

wish to understand and teach mathematical thinking. It will involve learning
riww things, and new colleagues from other disciplines. And it's almost certain
to be stimulated by my discovery that there's something not right about the way

I've been lcoking at things.

Are there any morals to this story -- besides the obvious one, that I've
been wrong so often in that past that you should be very skeptical about wnat
I'm writing now? [ think thera's one. My work has taken soma curious twists
and turns, but there has been a strong thread of continuity in its development; in
many ways, each (so-called) phase enveloped the previous ones. What
caused the transitions? Luck, in part. | saw new things, and pursued them. But
I saw them because they were there to be seen. Human problem solving
behavior is extraordinarily rich, complex, and fascinating -- and we only
understand very little of it. It's a vast territory waiting to be explored, and we've
only explored the tiniest part of that territory. Each of my "phase shifts” was
precipitated by observations of students (and, at times, their teachers) in the
process of grappling with mathematics. | assume that's how phase 4 will come
about, for I'm convinced that -- putting theories and methodologies, and tests,
and just about everything else aside -- if you just keep your 2yes open and take
a close look at what people do when they try to solve problems, you're almost

guaranteed to see something of interest.
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LECTURE 2

AFPLICATIONS OF UNDERGRADUARTE
MATHEMATICS

Ir. Finney’s lecture followed closely parts of the text of hiz paper
"Applications of Undergraduate Mathematics® origionally printed in
Mathematics Tomorrow, edited by Lunn Steen, Springer-Uerlag, Hew York,
19€1. The text is reprinted here by permission of the author.
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Applications of Undergraduate Mathematics

Ross L. Finney

In recent years there has heen a phenomenal growth in the professional use
of mathematics, a growth so rapid that it has outstripped the capacity of
many courses in our schools and colleges to train people for the mathemati-
cal tasks that are expected of thein when they take employment. People
who take jobs with the civilian government, the military, or industry, or
who enter quantitative fields as graduate students or faculty, discover with
increasing frequency these days that they lack acquaintance with important
mathematical models and experience in modeling. Many of them also find
to their distress that they have not been trained to be self-educating in the
application of mathematics.

This discovery, perhaps | should say predicament, is not the exclusive
domain of people who enter ficlds that depend for their progress upon
advanced mathematics. In Louisville, Kentucky, the profession of interior
decorating is highly competitive. To stay in business, a decorator must be
able to make accurate cost estimates. To do so withont delay requires
facility with decimal arithmetic, fractions, and area formulas. People hired
as stenographers by The First National Bank of Boston discover that the
work is done not on typewriters but on computer-driven word processors.
Many stores now use thieir cash registers for inventory control. The keys on
business machines have multiple functions, and the functions must be

Rots L. Finney is currently Senior Lectuser at MUT and Project Discetos of the Undergraduale

Mathematics Applications Project at Sducational Development Center, tue Ile was a
Fulbtight Scholas at the Poincare tnstitnte in Pans, France, in 1955, and eamned a Ph.D in
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and ai the University of Hlinois at Urbana-Champaign. Fram 1962 10 197 Finney chuired an
intesnational writing group for the Alsican Mathematics Program that developed autlicmatics
curricula and fexts for school 1 anglo phane Africa In 1977 e was awanded the Max
Bebermun Awasd of the Minors Coonci of Leachess of Muthenatios for exceptional contiibu
tions in the fichl of @icher cducation in mathematics
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performed in the right order. As these examples suggest, almost every
professionai field now uses nuthematics of some kind.

Since 1976 the U.S. National Science Foundation has provided support
for a unique mubi-disciplinary response to the need for instruction in
applied mathematics: the Undergraduate Mathematics Applications Pro-
ject. UMAP, as the Project is called, produces lesson-length modules, case
studies, and monographs from which readers can learn how to use the
mathematical sciences to solve problems that arise in other fields. The
applications presented by UMAP cover a broad range from chemistry,
engineering and pliysics. to biomedical sciences, psychology, cociolo, -,
economics, policy analysis, harvesting. international relations. earth sci-
ences, navigation, and business and vocational pursuits.

UMAP maodules are self-contained, in the sense that anyone who has
fullilled the prerequisites listed inside the front covers can reasonably
expect to read the modules and solve the problems without help. They
cover about as much material as a teacher would put into an hour’s leclure.
There are exercises, model exams keyed to objectives, and answers. ine
modules are reviewed thoroughly by teachers as well as by professionals in
the fields of application, revised, tested in classrooms throughout the wosld,
reviewed by individua! students 1o be sure they are as self-contained as they
should be, and revised again before publication.

The modules are used for individual study, 1o supplement standard
courses, and in combination 1o provide complete text coverage for courses
devoted to applications of the mathematical sciences. These sciences, which
I shall simply call mathematics. include probability and statistics, opera-
tions research, compulter science and numerical methods as well as the
clementary and advanced aspects of analysis, algebra _nd geomelry.

UMAP case studies are not intended (o be as self-contained as are the
modules. The studies contain data and background information for a
mathematical modeling problem as a field professional would collect it, but
readers are asked 10 develop their own models for solving the problems.
The data are real, the problems current. Teachers are given the solutiuns of
the problenis as they were originally worked out by the professional applied
mathematicians who furnished the problems 1o the project. Each study has
a teacher’s guide developed throngh classroom use. The case studies are
used in mathematical modeling courses, and may take several weeks to
complete. One of their striking features is that, Jike the UMAP modules,
they expect no previous experience with mathematical modeling on the pari
of cither instructor or student. Nor do they require any previous knowledge
of the applied field. Anyone with the right mathematical background can
work through them successfully.

UMAP's expositoty monographs are works of cighty pages or more that
ke availuble to students in upper level courses, and to faculty in diverse
ficlds, significant applications that are not in commeicial texts. 'l'lu;i ?isu
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give users of standard texts access 10 additional and complemeiary profes-
sional methods. Like all UMAP materials, the monographs are written for
students (o read, and conlain exercises with answers.

Although UMAP modules, case studies and monographs are similar 10
traditional texts in that they provide instruction for students with suitable
examples and exercises, they differ dramatically in their objectives: a
UMAP unit follows the logic of the practitioner, not the syllabus of a
course; it presents mathematics as a natural constituent of a whole prob-
iem, not as a defined niche in a planned curriculum. Because of their
allegiance to diverse mastess, UMAP curriculum matetials reflect both the
excitement and disarray of cusrent practice rather than the artificial ordes
of traditional texibooks. They provide an entrée 1o the useful mathematics
of the next decade. Here are some examiples, tuken from UMAP modules.

Measuring cardiac output

Brindel Horelick and Sinan Koont wrote Measuring Cardiac Output 10
teach an application of numerical integration in medicine.

Your cardiac output is the amount of blood your heart pumps in one
minute. it is usually measured in liters per minute. A person awake but at
rest, perhaps reading, might have a cardiac output of five or six liters a
minuie. A marathon sunner might have a cardiac output of more than
thirty liters a minute.

A change in cardiac output may be a symplom or o consequence of
discase, and doctors occasiorally want to measure it. One technique for
doing s0, onc :hat works when the heart’s outpus is fairly constant, calls for
injecting a small amount of dye in a main vein near the heart. Five or ten
milligrams will do. The dye is drawn into the heart and pumped threugh
the lungs and into the sorta, where its concentration is mecasured as the
blood flows past a Swan-Ganz catheter. Figure | shows a typical set of
seadings in milligrams per liter, taken every second for about iwenty-five
seconds.

You will natice in Figure 1 that the concentration stays at 0 for the first
few seconds. It takes that fong for the first of the dye to pass through the
heart and lungs. The concentration then begins 1o rise. §1 reaches a peak at
about 12 seconds, then dectaes steadily fos another seven seconds. Jnstend
of 1apering to 0 at that point, however, the concentration rises slighuly and
holds steady. Some of the dye that went through first has begun 1w
seappear.

The delermination of the patient’s cardiac output requires calculaling
the area under the curve that gives the concentration of the first-time-
through dye. To find this cusve, or at feast ¢ mahe o satisfactory version of
it, ous has to replace the real data points for the last few scconds by
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ficticious ones, as shown iy Figure 2. The chosen points continue the
down.wurd trend of the points that precede them. The estimates involved in
selecting the ficticions points scem reasonable, and any ersors introduced
by lhe_ re.plu.cemcm are likely 10 be small in comparison with other
unhcertaintics in measurcment.

The concentration cuive can now be sketched, but there is no formula
for it that can be integrated. This is often the case with data generated in
the laboeatory or collected in the field and there are standagd ways to cope
Qn the data here there is no reason 10 use anything more sophisticated lhaa.
Simpson’s rule or the trapezoidal rule, which is nrecisely what orelick and
Koont proceed 10 do. The patieat’s cardiac cuiput is then calculated by
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dividing the estimate obtained for the integral (expressed in nfilligmm
minutes per liter) into the number of milligrams of dye originally injected.

The result: 6.8 liters per minute.

Chemistry

Ralph Grimaldi's module, Balancing Chemical Reactions with Mairix Meth-
ods and Computer Assistance, shows how matrix methods may be used to
balance chemical reactions. The unit gives a concrete setting for the
concepts of linear independence and dependenice in vector spaces of
dimension four or more.

In the reaction

Pb(N,),+ CR(MnO,),=CR,0, + MnO; + Pb,0, + NO,

which takes place in a basic solution, the atoms from lead azide and -

chromium permanganate combine into four other products; chromium
oxide, manganese dioxide, trilead tetroxide, and nitric oxide. To find how
much of each of the original reactants has to be present to produce how
much of each of the products, we “balance” the reaction. That is, we find
integers u, v, ¥, x, y, and z, with the property that u molecules of lead azide
plus v molecules of chromium permanganate produce exacily ‘w molecuies
of chromium oxide, x molecules of manganese dioxide, p molecules of
teilead tetroxide, and z molecules of nitric oxide. Schematically,

u PB(N,),+ 0 CR(MnQ,),= w CR,0: + x MO, + y PB;0, + z NO.
The numbers u, v, w, x, y, and z are integers chosen to make the number of

atoms of each element the same on each side of the reaction. To balunce
the reaction, we balance the atoms.

To balance the atoms, we assign a basic unit vector to each element. it
does not matter which vector we assign to which clement, as long as we
assign one apicce and keep track of the assignment. The assignment

Pb=(l,0,0,0,0)
N = ({0, 1,0,0,0)
Cr=(0,0,1,0,0)
Mn = (0,0,0, 1, 0)
0=(0,0,0,0, I)

will do as well as any. We use five-dimensional vectors because there arc.

five elements.
We then replace the chemical reuction with the vector equation

u(1, 6,0,0,0)+ (0,0, 1, 2,8) = w(0,0,2,0,3)+ 1(0,0,0.1,2)
Fi, 0.0.0,-0 4 (0, 1.0,0, 1)
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You can see where the vect entries come from. For every u lead atoms in
lcad azide, P{N,),, there arc 6u nitrogen atoms; hence the u(l, 6. 0, 0, 0)
in the vector equation. For every » chromium atoms on the left side of the
reaction, there are also 20 manganese atoms and 8o oxygen atoms. And so
on for the other four integers, w, x, v, and 2. '

The idea now is to solve the vector equation for the integers u, o, w, x, ¢,
aad 2: To do so we rewrite the equation as a system of five linear cqualiuhs
in six variables. Six variables are too many for a unique solution, but we
can arhitrasily assign the value | to the variable u 10 match the number of
unknowns to the number of equations. We may want to change the value
assigned to o later, but u =1 will do for now. The resulting system in
matrix form is

0003 0]fo] [
0000 1lfw| |6
-1 20 00fxf{=]of
-201 06fy] |o
-8 324 1f|z] fo

_ Thif system of equations can be solved by a short computer progrem
listed i Grimaldi’s module. “Fhe solution given by the computer when
uw=\is :

v = 293333, w = 146667, x = 586667, y = 0.33333, z = 6.

These values are not the integers we seek because they are not all integers.
Cnce we noice that 0.03333 is about 1/30 and 0.06667 about 2/3¢,
however, we know enough to scale everything by taking u equal to 30
instead of 1. The resulting solution is

H=30,0=88, w=44, x = 176, y = 10, z = 180.

_ The module discusses what to do if at first you do not recognize the
tnteger solution that underlies the computer's decimal solution. It also
discusses an example in which reducing the number of variables to match
the number of equations does not seem to work. The difficulty is traced to
the fact that the geaction being balanced consists of two reactions that take
place simultancously, independently of each other. Each must he analyzed
apart from the other.

Scheduling prison guards

James M. Maynard’s A Lincar Programming Mdel for Scheduling Prison
Guerds describes a linear program that Maynard developed for the Pennsyl-
vania Staie Bureau of Corrections. As the newspaper clippings reproduced
in Figures 3 and 4 show, the Bureau was concerned in the middle §970's
about the increusing cost of paying prison guatds to wotk avertime. In the
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year ending June 30, 1975, for example, ihe Bureau paid neardy four million
dollars in overtime pay, $750,000 more than it bad paid for overtime work
the year befure. Some overtime work is (o be expected, of course. I is
expensive (0 keep & foll-time staff larpe enough (o cover peak loads, for a
staff this large is likely to be underemnployed much of the time. On the
other hand, a staff so small thut regularly scheduled guards have to work so
many overtime hours that they sometimes double their salaries is also
cxpensive, as the Bureau was finding out. Understaffing can be expensive
in other ways, (oo, for fatigue and high inmate-to-guard ratios create
dangerous tensions.

Legisiators and other officials thought the Stale might save money by
increasing the size of its regulur prison staff. Maynard was hired to
deteimine the size of the least expensive overall work ¢ ce.

The goals of Maynard's investigation were (o minimize the (otal cost of
paying prison guards, while reducing the overtime wosk and esiablishing
uniform work schedules in all prisons. Hle was able t0 meet the goals
successfully with a linear program, the one described in his UMAP module.

Table | shows two work schedules for one of the Burcau’s prisons,
referred 10 here as Prison G. One schedule has parentheses, the other does
not. The numbers with parentheses are the numt. 5 of guards recom-
mended by the lincar program. The numbers without purentheses show
how many guards were on duty at Prison G dusing the week ending
September 30, 1973,

The schedules are weekly schedules divided into twenty-one periods,
three shifts a day for seven days. Each box in the table shows the numbers
of guards working at three different pay levels during the given shifi:
regular, time-and-a-helf, and double time. The two numbers in the top line
in cach box are the numbess of guards working the shift as part of (heir
regular weekly work schedule. The two numbers next in line are the
numbers of guards working the shift at time-and-u-half. The last two
numbers are the numbers of guards working at double time.

For example, Monday morping, September 24th was worked by 94
guards on regular schedules, 19 guards at time-and-a-half, 3 guards at
double time. On Tuesday afternoon mors than half of the 146 guards
present were working overtime, '

The numbers in parentheses proposed by the linear program are strik-
ingly differeat from the 1973 figures. On Monday morning the model
covers the work toad with 117 regularly scheduled guards; where onee there
had been 22 overtime guards, now there are none. On Tuesday afternoon
there are oniy 9 overtime guards where onte there had been 76. The new
work schedule is more equitable and less fatiguing than the old one. It is
also more cconomical. B regular pay is calculated at $4 an hour, for
instance, the new schedule for Prison G saves the State $5,216 o week.

Readers of Maynard’s module are given an oppoitugity to follow the
development of the linear progua, (o sec the cffects of various scheduling

44 Rass L. Finney

Table 1. Data and Resalis from Prisoz G for the Week Ending Scpiember 30, 1973

Day Shilt
Muarning J Alternoon Night

9 (1 0 ()} 38 (14)
9 0) 6l 0] 4 )
Monday k] (1)) 0 0) 0 0)

— — —

we amlm o onl B 0

94 (126) 0 (3] 36 (14)
1 0) 62 9 38 0)
Tuesday 5 (0) 14 0) 0 (0)

— —

26 26 | 46 e | 14 04

97 (118) 6 (] 6 (74)
19 (0) 68 (0) 27 )
Wednesday 0 (0) 0 (0) 12 (0)

we e |13 am| B 03

94 (128) 63 (98) » (74)
4l (r1)) 24 ) M 1))
Thursday 14 (0) (k) (0) 10 (0)

—

s 49 [ w0 gy | B @y

4 97 45 89 ] 37 (39)
20 (0) 16 (0) 2 (0)
Friduy 2 ) 0 (0) 0 ()

— ermemn | e—m e | e

96 97) 61 @] 39)

57 43) » (45) 26 (0)
. 15 33) 14 (6) 3 {29).
Saturday 4 (0) 0 (0) 0 (0)

— — — —— —

76 (76) b1 ] 29)
53 (63) 36 “8y | 25 (35)

7 (0) [} 0) k] (0)
Sunday k] (0) 0 0) 2 (0)

8 ] uw Wl oo

assumptions, and to develop a small-scale program of their own. As in the
Grimaldi chemistry module, the program does not at first yield integer
solutions, but by rounding the numbers of Buards given by the computer to
integer values and rerunning the program lo determine the values: of the
remaining variables, one obiains a feasible solution that is close enough. It
is not necessary 1o prave that the integer solution found this way ic optimal.
Oue can test its vality by evaluating the ohjective function, which gives the
ttal amount of money paid to prison saands. If the value of the function




PN A v ext Provided by ERIC

45

Applications of Uadergrndiate Mathematics

for the integer solution is close to the value of the function for the original
not-necessarily-integer solution, then the integer solution is goud.

Continuous service in legislatures

Once a group of people has heen elected 10 a Iegistature. the number of
them who serve continuously from that time onward will normally decrease
exponcatially with cach passing election.

The elections for the Senate of the United States are held in the full of
cvery even-numbered year, The senators, elected for six-year ters, tuke
office the following January. Figure 5 shows the proportion of the 1801
Senatce that remained in office after successive elections. They were all gone
hy 1811. The data are fitted nicely by the curve

. D

where ¢ is mecasured in manths beginning in January 1801 with ¢ = 0.

Thomas W. Cassteven's module, Exponential Models of Legisltive Turn-
over, shows how exponcatial curves can be used to forecasi election results,
to speculate convincingly about what would have happened if 2 postponed
clection had been held on time, and 1o disclose suppressed data.

1,04

Portion remaining
[
tn

_ - 1 TR ! . T
1801 1803 1805 1807 1809 1811

] Date taking ollice

Figuse 5. The propartion of the U.S. Senaluss taking uffice in 1800 who contismed
in office throngh subseqnent tepms. The pattern shown hiere, of diserete election
data fitted by an exponestial cusve, is typical of legishative tmuover. Fhe data to he
litted may he cither uw (9% in Figure 6) or propoarhoual (as in the figure above),

[
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One of Cassteven's many interesting examples is the tuenover in the
membership of the Central Committee of the Communist Pany of the
Sovict Union. In 1957, First Sccretary Nikita Khruschev, in some semi-
secrel infighting. succeeded n remaving a numher of his apponents from
the Committee. Their identity was not made puhlic, nor was their total
number. Their astimher can he estimated, however, hy a calculation hased
on clection data from ncarby years. There were elections in Fehruary 1956,
October 1961, March 1966, and March 1971. From these one can calculate
the exponential decay constant far the Central Committee's normal turn-
over. One can then calculate huw many of the February 1956 cohort should
have heen preseat after the 1964 election, 1t turas out that there were about
12 100 few of them there, At least a dozen full memhers were removed in
Khruschev's purge.

It is intercting to aote that the decay constants for the U.S. Senate and
the Central Comittee of the Communist Pasty of the Soviet Union have
heen nearly equal itz recent decades. For the data shown in Figure 6, the
best fitting values of the decay constants are ahout 0.0079 (Scnate) and
0.0073 (CC/CPSU). ¥ the twelve memhers purged hy Khruschev in 1957
are added hack in, the match is even closer.

160}
e CC/CPSU 0 = Feb. 1956 241 = Masch 1976

140} ® US Senate 0 = Jan. 1957 240 = Jan. 1877

8

g

Number remaining

0 100 200
Time m months
Figure 6. A comparisun of continunus seqvice in the U.S. Senate and the Centsal
Commitiee of the Communist Pasty of the Soviet Union. The exponential decay
constants uf these two legislative bodies have been neasly equal in receat years.
Membership in these twa egistatures has been turning vver at aboul the same e,
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Mercator's world map

Anyone who has ever wondered what the integral of the secant function is
good for can find a satisfying answer in Philip Tuchinsky's UMAP module,
Mercator's World Map and the Calculus. The unit explains how the integral
of the sccant determines the spacing of the lines of latitude on maps used
for compass navigation.

The casiest compass course for a navigator 1o steer is one whase compass
heading is constant. This might be a course of 45° (northeast), for example,
or a course of 225° (southwest), or whalever heading is required o reach
the navigator’s destination without bumping things on the way. Such a
course will lic alorg a spiral that winds around the globe toward one of the
poles (Figure 7), unless the course runs due north or scuth or lies parallel 1o
the equa’or.

—

Figure 7. A fhight wuth a constant Leaing of 45° East of Noith from the Galapagos
Islands in the Pacific 10 Franz Josel Land in the Asctic Ocean,

Ross L. Finney

In 1569 Gerhard Kramer, a Flemish surveyor and geographer known o
us by his Latinized last name, Mercator, made a world map on which all
spirals of constant compass heading appeared as straight lines. This fanias-
tic achicvement met what must have been one of the most pressing
navigational nceds of ali time. For from Mercator's wap (Figure 8) a sailor
could read the compass heading for a voyage between any two points from
the direction of a straight line connecting them.

Figure 9 shows a modern Mercator map. If you look closely at it you
will see that the vertical lines of longitude, which meet at the poles on the
globe, have been spread apart 10 lie parallel on the map. The horizontal
lines of latitude that are shown every 10° are parallel also, as they are on
the globe, but they are not evenly spaced. The spacing between them
increases tloward the poles.

The secant funclion plays a role in determining the correct spacing of ali
these lines. The scaling factor by which horizontal distances from the globe
are increased al a fixed latitude 7 to spread the lines of longitude 1e fit on
the map is precisely sec r. There is no spread at the cquator, where
sect = L. At latitude 30° north or south, the spreading is accomplished by
multiplying all horizontal distances by the factor sec 30°, which is about
1.15. AL 60 the factor is sec 60° = 2. The closer to the poles the longitudes
are, the more they have 1o be spread.

The lines of latitude are spread apart toward the poles 1o maich the
spreading of the longitudes, buj the formulation of the spreading is compli-
caled by the fact that the scaling factor sect increases with the latitde 7.

200" »e "J e

L 22 ® G | 3 ®* -’

I"_igluc 8 A sketeh of Mercator's map of 1569.
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Figure 9. The flight of Fipwe 7 traced an a ntodern Mercator miap. Cousses of
constant compass heading appear as stiaight fine pathis on a Mercalor map. They
are easily constsucled. measused. and followed.

The factor 10 be used for stretching an intesval of Jatitude is not a constant
on the interval. This complication is overcome by ialegration. i R is the
radius of the globe being muuleled. thea the dislance D between ike lines
drawn on the map 10 show the equalor and the latitude a° is R times the
integral of the secant from zero 10 a:

D= R-[ascc 1 d1.
)

The distance on the map hetween two lines of north latitude, say fiom a°
up lo h°, is

D= Rf'sec; dr - RI"scm dr = rfbscw ds.
) ) )

Suppose, for zxample, that the equatorial fength of a Mescator mnp. just
malches the equalor of a glohe of radius 25cm. Then the spacing on the
map hetween the equator and latitude 20° narth is

251-2"5&: 1dr=%cm,
)

wliereas the spacing hetween latitudes 60° north and 80° north, is

)
251 sccrdr=28cm
Jol)

Ross L. Fiuncy

The vertical distance on the wap belween lalitude 60° and latitude 80° is
more than three limes the verlicat distance between fatitude 0° and latitude
20°. The navigational properlics of a Mercalor map are achieved al the
expense of a considerable distostion of distance.

Concluding lhoughis

Mathemalical reasoning penelsales scienlific problems in numerous and
significant ways. If the secret of lechnology, as C.P. Snow said, is that it is
possible, then the secrel of mathewatical modelling is that it works.
However, the process of developing and employing a mathematical niodeS
is both mose subtle and more complex than is the traditional solution of
mathenslics textbook prablems. Real models frequently have to be con-
strucled in the presence of morse dala than can be taken inlo account; their
conclusions are often drawn from calculations in which good approxima-
lions play a grealer role than d exact solulions; very ofien these ase
conflicting standards by which solutions can be judged, so whatever an-
swers cnierge can only sarcly be labelled as right or wrong. Students usig
UMAP modules, case studies, or monogsaphs experience naih=alics in ils
scientific conlext, and leave the classroom beller equipped lo face real
demands of mathematical modelling in business, research, and government
work.
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ASPECTS OF CURRENT RESEARCH IN MATHEMATICS EDUCATION®*

Carolyn Kieran

Unjversité du Québec 4 Montréal

The session devoted to *Aspects of Current Research 1n Mathematics
Education® at the 1986 meeting of CMESG tncluded reports of research being
carried out 1n British Columbia, Alberta, Ontario, Quebec, and
Newfoundland, with a special report being given by Jorg Voigt on his
Tesearch in Bielefeld, West Germany. These reports were not meant to be a
compr .ensive survey of the mathematics education resarch being engaged in
throughout the country, but were intended to give an idea of some of the ’
main themes of current interest to researchers and to provide pointers to
some of the work which is going on. More detai]s can be had by
corresponding directly with the researcher(s) involved. This article

briefly summurizes those reports.

British Columbja

David Kirshner reportea on the research projects of three colleagues,
as well as hls o , work. There 18 no single theme which characterizes
these projects. One study (D. Owens) 1nvolves intensive work with a small
number of sixth grade pupils to see if meaningful understanding of decimal

concepts can be achieved at that grave level. Another project (W, Szetela)

.Thank you to all who contributed both to the session and to this articie:
David Kicshner (B.C.), Tom Kiecen (Alta.), William Higginson (Ont.), Erika
Kuendiger (Ont.), Claude Gaulin (Que.), Joel Hillel (Que.), Lionel Mendoza
(Nfld.), and Jorg Voigt (Bielefeld, West Germany). Qur apologies for
misrepresenting anyone’s research and for not being able to include mention
of everyone’s work.
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deals with problem solving, more specifically, the imp:ovement of teacher
cellability ratings in the evalgatlon of students’ protocols. Szetela 1s
also carryling out a cross-cultural problem-solving study (Canada and
Poland) Involving 11- and 13-year-olds. The third study ¢D. Robitaille and
G. Spitler) focuses on developing teaching materials and providing
1n-service training at the junior secondary level in the Dominican
Republic. Kirshner‘s research in algebra 1s based on the assumption that
symbol skill relies on procedures vhich dre not related to mathematical

theory, but rather to generative linguistics.

Albecta

Alth?ugh Tom Kieren was not able to attend the meeting this year, he
prepared a report for this session.” The thrust of the research being
carried out in Alberta can be captured in the questions: How do persons
ouild mathematical ideas? What curricular/instructional actions affect
(positively and negatively) this knowledgé building? A recently completod
study in Calgar; (L. Macchand, M. Bye, B. Harrison, T. Schroeder) looked at
the match of school demands and knowledge bullding levels of puptls in
elementary schools (1767 pupils). A *match® with student levels and
demands was found for 64% of the cases, but there were significant
divergences at the grade S level where the currlculum appeaced to be rather
formal. An Edmonton group of researchers (Y. Pothier and D. Sawada) is
Investigating partitioning and fractional numbers. Another team (T.

Kieren, D. Sawada, B. Wales) has been looking at an Image of mathematical

»
Kieren, T. *Mat..'matical Knowledge Bull
. ding in the Classroom: A Report
Recent Mathematlcs Sduca.ion Research and Development in Alberta®. goplegf

of thls report are available from T.
Banonton. Ribecta: oo pun Kieren, University of Alberta,

ilzsl(:‘ (;:l
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knowledge building and using it to interpret the fractional comparison
abilitles of young children (ages 6-8). Researchers (D. Sawada and A.
Olson) are also Involved with using the concept of auto-poeisis as
deve'oped by Maturana to explaln how a person’s mathematical knowledge
system evolves,

As well, there has been considerable work on Logo and mathematics :n
Edmonton: Cathcart has looked at debugging strategies; Kieren and Olson
have developed a theoretical model relating van Hiele geometry levels,
levels of Lojo use, and levels of language use from Frye; Luawig and Kieren
have tested this theory and used 1t to explany results in a Turtle Geometry
'develupment project 1nvolving transformational geometry with seventh
graders; Dobson and Richardson have developed extensive curriculum
materials on Logo ard problem solving for prellminary elementary aged
children.

Finally, there has been an interest in expert systems and mathematics.
Balding has designed a system which allous teachers to analyze the ratio
work of a consistent sStudent work simulator and, thus, to identify aspects
of student thinking patterns. MNoreno 18 developing @ problem solving

helper which will use expert knowledage/strategies 1n a computer advisor to

beginning calculus students.

Gatacio
Some of the recent mathematics education Cesearch in Ontario has

focused on intecpreting the results of the Second International Mathematics
Study (SIMS). For example, E. Kuendiger and G Hanna have analyzed SIHS
data according to sex differences. Another related area of research

Interest 1s Women and Mathematics (E. Kuendiger, G. Hanna, P. Rog.rs).
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Xuendiger has developed a theoretical model accounting for sex differences
In achievement and course-taking behavior. A current project (E.
Suendiger) examines relationships between preservice student teachers’
perceptions of mathematics and tﬁelr mathematics teaching. Another Study
(G. Hanna) focuses on Instruction and achievement 10 elghth grade
mathematics classrooms. Another project whi~h is currently 1n progress (N.
Hutchinson) involves the teaching of representation and methods of solution
of algebra word problems.

A large number of Logo Studles were incorporated into the *Creative
Use of Microcomputers by Elementary School Children* Prolect (W. Higginson,
D. Burnett, H. Carmichael, and others). Though the learning of mathematics
was not the major focus of this project, the tinal report does provide
sevecal Insights into children’s geometcy activity in virious Turtle

Geometry enviconments.

Guebec

Much of the research taking place in Quebec can be characterized as
the study of the cognitive processes 1nvolved in learning mathematics.

Many of these cognitively-oriented studies investigate different
aspects of mathematical learning within a Logo environement. One research
team ¢J. Hillel, C. Kieran, S. Erlwanger, J.-L. Gurtner) Is examining the
use of visual and analytical schemas by sixth graders In the solving of
gelected Turtle Geometcy tasks. Another group (H. Xayler, T. Lemerise, B.
Coté) is Investigating the evolution of logical -inathematical thinking among
10- to 12-year-olds in a Logo environment. A thirg study (R. Pallascio ang
R. Allaire) Is focusing . the development of gpatial-visualiz -:on skilis

by fourth graders using Logo-.ske computer activities involving polyhedra.

In another study (E. Lepage), a modified version of Logo for the very young
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serves as the setting for cesearching the learning of early number
concepts. An Object-Logo computer programming enviconment is used by
another researcher (G. Lemoyne) .o examine the knowledge schemas used by -
to 12-year-olds in their production of mathematical expressions. '
Other Studies use non-Logo computer settings for thelr investigattons.
One project (A. Taurisson) lnvolves researcher-designed programs to be used
as tools by elementacy school children in order to develop their p}oblem
solving 22llitles. Another team (A. Boileau. M. Curangon, C. Kieran) 1s
examining the use of computer tools and methods as a semantic support for
learning high school algebra. A group of researchers (J.C. Morand and C.
Janvier) is lnvestigating the evolution of students’ primitive conceptlons

of circles. Anothér study (C. Janvier and d. Garangon) 13 looking at the

understanding of functions and feedback syatems using microcompd}ers. .
Other researchers (M. Bélanger and J.-B. Lapalme) are creating exploratory
computer learning enviconments in which children can develop problem
solving strategles.

Other Studies with a cognitive emphasis which are currently being
cacried out Cor have only recently been completed) include the work of:

N. Herscovics and J. Pecgeron who are investigating the acquisiticn of the

concepts of early number among kindergartners and of unnt-fract;on among
older children; J. Wheeler and L. Lee on high school students’
understanding of generallzed algebraic statements: L. Chaloux on sixth and
seventh graders’ construction of meaning for algebraic expressions: B.
Janvier on the use of dynamic representations in the learning of early
arithmetic; N. Bednarz who 18 comparing constructivist and traditional
approaches to the teaching of numeration; C. Girardon on conflictual

conceptions of transformations; A. Boisset on the difficulties vhich

college level students experience with calculus; B. Héraud on the concept
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of area among R-year-olds; C. Gaulln and R. Mura on the effects of

calculators on the achlevement of flfth and sixth graders; C. Gaulln, E.

Puchaiska, and G. Noelting on students’ understanding of the representatlon

of 3-D geometrical shar~s by means of orthogonal coding; N. Nantais on the

evaluation of chlldren’s mathemat|cal understanding by means of the
minl-intecvies.

Another group of studles exlists where the focus |s on attitudes
towards mathematics: J. Dionne has analyzed teachers’ perceptions of
mathematics and of mathematlcs learning; L. Legault |s looking at the
affectlve factors Influencing mathematical difficulties; L. Gattuso and R.
Lacasse are Investligating mathematlical anxlety at the college level.
Several related studles have recently been cacrled out by R. Hura and her

colleagues on Women and Mathematlcs.

Bewfoyndlang

The mathematics education research which is presently underway in

Newfoundland Includes the wock of L. Mendoza, E. Wiillams, and 4. Kavanagh.

L. Ke -oza Is Involved In a study of ervor pattecns assoclated with
comblning mrnomials. He Is examlning both the error patterns and the
underlying rationale for these errors by means of written testing and
In-depth Interviews. M. Kavanagh |s studylng grade 12 students’
pecceptions of mathematlcs, comparing those of studen.s trom all male, a]l
temale, and cu-educatlional schools. E. ¥llllams’ focus Is the study of
students writing mathematlcs competitions such as the Canadlan Mathematlics
Olymplad, more specifically, the Investigation of heuristic ang execut jve

strategles used by *go.d* mathemat!:cal problem solvecs.
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Sgscial Report

The CMESG reseacch Informatlon sesston In St. John’s also Included a

speclal report by Jorg Volgt of Blelefeld on his own research. He provld{d

us with a brlef summacy of hls presentatlion which Is reproduced here:

Pat.cerns and Routines In Classroom Interaction:
A Microethnographlcal Study in Mathematics "*ducation *

Jorg Volgt
, Unlverslitit Glelefeld, West Gecmany

Often thc questlon-response teaching in mathematics classrooms 1S seen
by the teacher as belng a liberal dlscourse in which the students actively
participate. In opposition to the teacher’s view, microanalyses of the
dlscoucse processes point to concealed and stereotyped patterns of
Interactlon and routlnes. Cectain patterns and coutlnes lead to
mlsunderstanding of the teacher’s Intentions. On the one hand, the
patterns and routines facilitate the *smooth® functioning of the classroom
discoucse; whlle, on the other hand, they produce undesirable effects on
the students’ leacning. K

Por Instance, the following pattern has been reconstructed across
several videotaped sltuations. The teachers attempted to actlvate the
students’ everyday 2xperlences as a starting-point for Introducing a new
mathematlical content.

-- The teacher asks 24 ogen, amblguous question hoping to eliclt the
students’ non-academlc ldsas.

-- The students refer to thelr own subjectlve expecicnces from
everyday 1lfe.

-- The “eacher rejects the students’ (°deviant®) everyday idea using
tact.cal routlnes. Although the students’ ldea could be a worldly
wisdom, the teacher wants a different specific ldea. He uses
suggestive hints in order to make the siudents glve the expected
answer.

-- In effect, the students learn to Isolaile the mathematlcal concept
In the classroom from thelr "truths® In everyday llfe.

While the teacher thinks that he used the students’ experlences as a
starting polnt, the ozpcsite happened. The teacher and the students seem
to be so skilled In how to deal with each other that the teacher does not
become aware of the gap between hls intentlons and the routlnes taken for
granted. Because of the latency of the routines, it would be helpful to
develop the teacher’s awareness of such mlcroprocesses as they occur 1n
these soclal Interactlons.

* A fuller version of this study 1s reported in:
Volgt, J. “Patterns and routlnes in classroom Interaction®. Rechercheg

en_Didactigue ges Mathématiques , Vol. 6, No. 1, 1985, pp. 69-118.
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This Study Group derives much of its excitement and cohesiveness from
bringing together individuals who have long been concerned with topics
involving affective aspects of mathematics education, but who have
been developing their ideas almost in isolation. For me it meant
reconnecting with two excellent foci: the positive part of affec~
tivity, and the community in the classroom which gets the stage for
these positive (eelings through its cooperative organization. As we
headed into our final hour, Peter Taylor summarized most beautifully
our collected anecdotes in the following framework:

* Qur

openly
hidden

belief in the sharing of goals; e.g. by the teacher,

and honestly, with full frontal explicitness, reducing
agendas,

* Our belief in the sharing of our joy in doing math,

* Our caring for the people in the class and in the mathematics
weing done, and

. * Our promotion of cooperative small group work.

John Poland

The Working Group focussed on two activities. we did much problem
solving in pairs in an effort to identify aad explore the emotions in-
volved in problem solving. This activity is described and the find-
ings are discussed in the appended pager.

Our second major activity was to share techniques for implementing the
franaworkt:unnarizeg above. The following parag-aphs list some of the
many creative techniques that have been devised and q

members of the Working Group. ¢ used by various

~The use of a monthly newsletter talking about the course, test
results, who the teachers are as people, the positive e ®
mathematics, and where to get help. ! g aspects of doing

~-Taking small group or individual pictures at the beginning of the

course and posting them (perhaps take th
gathering). P P em at an early informal

~Make a list of names and phone numb
aversone 8 cour. p mbers of class members and get

~In some way convey expilicitly to the students that they are a spe-
cial group, perhaps breaking ground through gome teaching or cur-
xiculur innovation you are sharing with them.

[Aruitoxt provided by Eric: =
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-Build in fun with math learning. Use Math games. Decorate the room.

Use flowers, music and movement.

-Control the lighting. Some teachers turn off fluorescent lighting
and use candles or lamps instead.

-Interview the physics, chemistry, etc. professocrs and put on big
cardboard their answer to the question, "What I want students to know
when they come into my course®.

-"Algebra Arcade" (Wadsworth Electronic Publishers, 8 pDavis Dr., Bel-
mont CA 94882) was suggested for a first algebra course for groups of
3 or 4 students to work at a time or for one large demonstration
screen.

-Allow students to suggest how they will be evrluated in the course.
They must come to ccnsensus. The discussion can extend over several
days.

~-Spend teacher energy on the pusitive. Emphasize tha students who do
achieve and their accomplishments.

-Talk about what understanding proofs does for them as people, that
they can handle and generate arguments. Have positive expectations.

-Use ice-breaking techniques that help students learn the correct lan-
guage and notation of muthematics. For example, put 4-5 students or a
team to try to communicate to another team (without showing any
writing) a given collection of math symbols.

-Seriously address the idea of math anxiety. The teacher can talk
about his or her own feelings about mathematics. Alert students to
use positive sclf-statements and other means to prevent emotions from
overwhelming short term memory. Bvaluating an emotion can take up so
much student memory that little is left for mathematics decisions.
Math thinking becomes confused with thinking about math.

We came up with many areas .o explore further. We would like to know
which ways of organizing classrooms and tests encourage students into
good study, classroom and exam habits. How siiould v2 sequence ques-
tions, sets of problems that will provoke students to “review" as in
Polya? How should small groups best be utilized? What is best gize?
How can writing be used in math classrooms?

We decided to ask colleagues to describe techniques they have used
successfully. We plan to compile these anecdotes together with a bib~
liography of appropriate readings and disseminate the information in a
fuure CMESG Mewsletter.




AUTHORITY IN THE CLASSROOM

I should like to see the locus of authority in the classroom
shift away from the teacher and the material (these ghould be
regarded as resources - a leas threatening category) and toward

more inwardly generated forces such as beauty, excitement,
challerge, comaunication.

Let me explain the difference. When consulting a resource,
you ave the boss, when consulting an authority, the authority is
the boss. Alternatively, from a risource you take what you want;

from an auZhority, you take what it wants. ktarly in the learning
gaue, teschers have to be authoritative. But part of their
purpose must be to gradually change themselves into resources (by
changing the student) and gsubstitute instead the criteria which
guide active scholars through the question of whether they are
working in the right things: 18 it beautiful? does it exciteme,
challenge me? does it lead to fruitful communication with my
colleagues?

1f ve relate this to problem-solving, one thing we gee is
that the problems the student works on should much more often be
generated within himself and the various sources of inward
authority I listed above should increasingly be used to guide him
or the questions of what time he should apend on the protlem, and
vhether certain avenues should be p.:rsued.

—

a.-\q.
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COMPETITION AND COOPERATION

When one atudies a community, there are two types of forces
one looks for: competitive or disruptive forces and cooperative
or gupportive forces. The mathematics classroom {38 a community
in which often too much of the action is really of a competitive
nature, either atudent against student, or student against a
teacher's expectations, and the effect of this must often be to
increase gtudent anxiety.

We felt that such anxiety was not beneficial to the student.
While it might enhance certain aspects of the student's
performance, we felt it was not likely to increase his
problem-solving abilities, and would certainly dampen the
feelings of joy he mighthave whe. searching for the solution.

We made a number of suggestions for en* incing the
cooperative atmosphere of the classroom, in snort, the feeling
that we're all on the same side. First it is important that the
teacher be open and as explicit as possible: about the goals of
the course, about his views on the subject matter, and about his
own feelings about the class. It is important that the teacher
caye both about the subject and sbout the students, and be
clearly enjoying the teaching experience. Second, the nature of
and rationale behind, the methods of testing and evaluation,
should be thoroughly aired. Thirdly the students should know and
work with one saother; often this can be facilitated with small
group work. Other devices such as classroca games, attention to
physical character of the room (lighting, decoration), and a
monthly newslettor, were mentioned. It was suggested that
experizental programmes often generate a very positive feeling of
shared community. Perhaps we should more often be experimental;
even Lf we have little f{exibilic{ in the content of the
curriculum, ‘ve can expariment with scyle.
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July 20,1986.

The “affect® workshop took place six weeks ago and even if some of the details
have slipped away (thanks for the reminders Fran), I am still feeling the after-
affects of having been with a group of student-centered math teachers who are
interested in exploring affective e¢leme i in themselves and their students.
Although I have thought a lot (and talked a lot) about this theme, I feel that
the workshop broke my isolation.

The experience of doing ind®vidial problem solving in teacher-teacher pairs

was new to me. I have done some introspective work, Interviewed about a hundred
students, and given the introspective problem solving exercise to many adults.

It was interesting to see that as teachers and mathematicians we are not so

very different from our students in affect during problem solving. Anocher
memory of that experience is of several people indicating that their problem
solving behavior wa% in scme way indicative of their behavior in non-mathematical
sftuations: *That's the story of my life." If this {s so, it certainiy would
be worth exploring further.

Although not everytiing has been said about affect in individual problem solving,
I feel I would like to move on to an exploration of group problem solving. In
the workshop we all seemed to be interested in promoting cooperative models and
group work in our classrvoms. Y=t problem solving in groups is much more
complicated than individual work. Group dynamics and the politics of the class-
room come into play. I, for one, feel a little insecure in initiating group
work - which maybe why I rarely “find time" for ft. I th... that the affect
workshop, because of {ts secure and supportive atmosphere, would be the least
scarey place to start looking at group problem solving.

For this I'd even go to Kingston!
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I like the clever twist" of logic that turnm a two
page proof into a one-half page proonf. There are
lots of clever little insights. Th e's something
verv satisfying about a nice tight argument that no
one can doubt is correct...l've worked on a research
problem for over six months with no results...now I'm
starting to dream about it and that's too much..the
mathematics is taking too much control over me.
(Angrily.) (Rosamond, 1982)

Mathematics often is viewed as the ideal discip-
line-pure rational thought dealing with ideal objects
to produce jirrefutable arguments, not coloured by ang
emotion. Training in mathematics is seen as
producing students capable of such clear thinking in
all Qgdisciplines. So why don't all mathematics
teachers present mathematics in the ultimate,
Bourbaki style? To mathematize is supposedly part of
the human condition, so how can there be such a thing
as math anxiety, when feelings should clearly not be
a part of learning in mathematics?

Or does mathematic arouse emotion because it was
conceived out of emotion in the first place?...What
is the link betwee: the affectivé and the cognitive?

(CKESG An~..uncement, 1985)

PATTERNS OF EMOTION IN MATHEMATICS PROBLEM-SOLVING

In an effort to understand and exp‘'icate th feelings of
satisfaction and anger expresssed by the mathematics graduate
student in the first quotation, a Workshop on the Role of
Feelings in Learning Mathematics was held during the Canadian
Mathematics Education Study Group annual meetings of 1985 ang
1986. We engaged in a problem-solving exercise that also was
given to cix mathematics edwcation graduate students at a State

college and on two occasions to six people w*o mct in a private
home.

We are all (with the exception of two peoplei involved in
mathematics as professional mathematicians, as teachers, as
graduate students or as people who use mathematics in our work.
We believe that thinking, feeling and acuing work together, that
true understanding implies feeling the significance of an idea,
and that our experiences are not far from that of our students.
Wo decided to examine our own feelings {a depth in hopes of
finding outstanding commonalities that could be used to improve
classroom teaching.

. Studies on cognitive science (Davis, 1984. Papert, 1989),
problem-solving (Silver, 1985), metacognition (Schoenfeld, 1983)

b

68

and belief gsystems (Perry, 1970) offer some insight into the role
of emotions in problem-solving but only indirectly. We are not
fure we have even a vocabulary with which to describe feelings at
a specific moment as a function of many variables.

[

To begin with, we .ide a list of ‘' retevant positive ana
negative emotion descriptors (see appendix). This 1list was
adjusted by the results of the exercise. The exercise jis a
simple one. We went in pairs to different parts of the room
where one person agreed to be the problem-solver and the other
the observer. The rules were i) The solver do his or her best to
provide a runtiing commentary on feelings. 2) The observer keep
quiet, pay attention, take notes. ,

After a fized amount of time -(15 minutes, in later sessions
changed to 39 minutes) &ll gathered and each observer reportei on
what the solvei had done, focussing on the feelings. The solver
also rep/rted.

The roles were then switched, observer became solver.
Solver became observer. Another problem was presented and the
observation and reporting process repeated.

We feel many positive emotions (challenge, hope, zest,
satisfaction, etc.) when doing mathematics and wish to promote
these in our students, Lazarus is a noted psychologist at
University of California at Berkeley who has done extensive
analysis of the theory of emotions. In his paper, “Emotions: a
Cognitive - Phenomenological Analysis®, he describes some of the
contributions positive emotions make to coping. Before
describing our exercise and the implicatione that we found for
teachi-g, I will briefly outline some of Lazarus' position and
make some connections to mathematics.

LAZARUS OGN POSITIVE EMOTIONS

Lazarus points out that negative emotions have Leen studied
almost exclusively. Some reasons for this are that emotions have
been studied as evolutionary and that negative emotions such as
fear or stress influence our capacity to survive. Another reason
is that emotion is stulied by therapists who may view emotion as
pathological. In this case happiness may be seen as hysteria,
concern as paranoia and hugs as evidence of nymphomania. A third
reason is that it is more difficult to measure arousal for joy,
delight, and feelings of peace than it is for rage, disgust or
anxiety.

Because we are trying to promote good problem-solving, we
feel it is appropriate to focus on the positive feelings
associated with our goal: on hope rather than hopelessness,
challenge rather than threat, zest rather than dispair although
negative emotions do need to be recognized.

Pogitive emotions tend to be frowned upon or v.ewed as
“childish.* Not many people exhort optimism like Ray Bradbury
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does: "We are matter and force turning into imagination and willl
I am the center of a miracle! Out of the things I am crazy about
I've made a lifel...Be proud of what you're in love with. Be
proud of what you're passionate abouc! (Bradbury, 1986) It is
ev.n hard to hear people shout gladly onto the Lord; but we were
just trying to hear people shout gladly about mathematics., People
who exhibit positive emotions often are accused of playing, of
not being serious.

Yet playing with ideas is inherent in mathematies problem~
solving. What emotions should we expect to feel when engaging in
problem~-solving? Lazarus answers this by saying that the essence
of play is that it is highly stimulating. It is accompanied by
pleasurable emotions such as joy, a sense of thrill, curiosity,
surprise, wonder, emotions exploratory in nature. We recognize
that we do experience these positive toned emotions when doing
mathematics.

As educators we wish to know the optimum conditions .that
encourage problem~-solving. Lazarus s8ays, "...exploratory
activity ocurs more readily inm a biologically sated, comfortble
ard secure »nimal than in one greatly aroused by a homeostatic
crisis. The human infant will not venture far from a parent
unless it js feeling secure, at which point it will play and
explore, venturing farther and farther away but <ceturning
speedily if threatered or called by the mothzr.” As shall be
discussed in more detail in the next section, mathematics
problem-sclving requires playing in an almost "other~-world” of
intense conc2ntration. Insecurities in terms of math ability oz
other issues {(world pwace) inhibits problem-solving by
interferring with the level of concentration.

USES OF POSITIVE EMOTIONS

person uses
sustain

at least three ways in which' a
"breathers” from stress, to

Lazarus sees
positive emotions: as

coping, and to act as restorers to facilitate recovery from harm
or loss. Lazarus' discussion may be interpreted with mathematics
in mind.

BREATHERS OR TIMES OF INCUBATION

"Breathers” are times when positive emotion occurs as during
vacations, coffee breaks or school recess. They can also be
thought of as times of incubation.

Lazarus gquotes the noted mathematician Poincare to sudgest
that it may be the good feelings themselves that allow a solution
to emerge ‘from the subconscious to the conscious.

unconscious
directly or

comment that
those which,

surprising
"are

made the
ideas

Poincare
creative mathematical

77

most profoundly our emotional sensibility.”

indirectly, affect
since creative thoughts are aesthetically

By this he meant that,

pleasing, the strong, positive emotional reaction to such ideas

provides an opening through which they are ushered into

consciousness. ¢
Lazarus reminds us of another relevant description of a

"breather” made by the great German physicist Helmholtz:

He (Helmholtz) said that after previous investications
of the problem “in all directions...happy ideas conme
unexpectedly without effort, like an inspiration. Ffo far as
1 am concerned, they have never come to me when my mind was
fatigued, or when I was at my working table...They came
particularly readily during the slow ascent of wooded hills

on a sunny daj;.”

The acceptance of the role of a breather is reflected in the
usual advice given by teechers to their students: “Concentrate

long enough to get the problem firmiy in your mind and to try
several approaches. But then take a walk or do some pleasant
activity and let your mind work on the problem for you.”
SUSTAINERS OR MOTIVATORS

Pogitive emotions act to sustain problem-solving 1in the

sense that good feelings build on good feelings. Mathematics and
the word "challenge®” often are linked together as in "The probiem
is a challenge.” A challenge can be viewed as a threat and in
our exercise, problam-solvers were momentarily worried about
fajlure in front of an observer. However, in challenge, a
person's thoughts can center on the potential for mastery or
gain. This challenge is accompanied by excitement, hope,
eagerness, and the "Jjoy of battle.” All these positive emotions
were mentioned by problem-solvers. One solver summarized the
feelinc as "the joy of mental engagement and the bringing of all
mental force to bear in a cohesive way.” Solvers who perceived
their problem as too easy felt disappointment even before they
tegan to work on the problem. Those who felt the problem worth
working felt an immediate Joy even before proceeding. This Joy
was a signal to bring all mental force to bear on the problem,
which in {itself produced pleasurc and therefore motivation to

continue.

Lazarus describes "flow® ,an extremely pleasant, sustaining
emotion, as in the case of the basketball player who is "hot" or
the inspired performance of a musician.lLazarus claims flow arises
is totally jmmersed in an activity and is wutilizing

when oOne

one's resources at peak efficiency. Mathematical problem-solving
requires total immersion and we found that a comfort with
notat.on was importunt in maintaining this flow. Comfort with

notation will be discussed later in this pape..

motivatiun O
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The positive emotion of hope also provides




knep going. Occasionally during a problem-azolving episode the
sulver lost control of the problem. Solvers said, "I've 1lost
control of the problem.” or "This is too complicated, too many
angles to label.” or "I Zeel this is getting a little out of
hand. This one and that one cancel out and I haven't used fact
that it's a prime.” Hope, the belief that there is even a slim
chzace things will work out, helps one continue. Ambibuity
nurishes hope. One cannot be hopeful when the outcome is
certain. We would llke to know how ambiguity can serve classroom
mathematics. The emotions of challenge and hope are powerful
motivations in problem-solving and deserve further research.

A more obvious way in which emotions sustain actions is in
terms of longer range goals. The student who has a positive
feeling solving one math problem is more likely to try another.
The confidence that comes from understanding mathematics empowers
ths student to attempt new ventures also, as in the case of a
geometry student who attributes hia decision to help :in crime
prevention directly to his succass in his geometry class.

RESTORERS

Lazarus offers a third function of positively toned
emotions, that of restorer. Lazarus' descriptions of recovery
from depression or restorations ¢f self-estcer might be userul to
the teacher dealing with math-anxious students. Lazarus gquotes
Klinger:

At somc time during clinical depression patients become
unusually responsive to small successes. For instance,
depressed patients working on small laboratory tasks try
harder after successfully completing a task +.an after
failing one, which {is a pattern opposite to that of
nondepressed individuals, who try harder after failure.

It would be worthwhile for the classroom teacher to know when
small successes are more likely to evoke positive emotions.
Offering a small task to a math anxious student may foster
optimism and incentive while the same problem may seem trivial to
a ron~-anxious studen% and provoke anger or disappointment. This
is an area for more research.

Much of the information on emotion ‘n problem-solving is
obtained by having students £ill out questionnaires. While the
information is useful, a rating on a scale from one to five of
confidence in loing math, 1iking for math, or usefulness of math
is very general. Questicnnaries also ise rarcte from the actual
process of problem~solving. Recollections of feelings might not
be quite the same as the feelings at the time. Also,
mathematical problem~. lving requires intense a“tention to the
problem. It is likely that without some help a solver will not
even be aware of his or her emotions. The above .cascns together
with the belief that our own feelings when doing mathematics are
the same as those of our students prompted us to do an exercise
3tilizing a close observer and introspection.
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OBSERVATIONS FROM THE EXERCISE

Altogether the exercise of observin
reporti
reporting was done by 19 pairs. Problemg,lnltglllyngére
puzzle variety (Gardiner,1967, 1979. Mott-Smith,
were
r the whole group.

later sessions more substantial
roblems
Honsberger. One person kept track of Elue fo

group of six people (three pairs)
posturc:..laughter...lntent stlllnes:sgn' et an
not nced in this paper.

2

but that description

-

U
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EMBARKING ON THE PROBLEM~SOLVING

Solvers accepted their problems with curiosity nsgo pos!té::
anticipation. These were peogle ho hau ot dond
formal wmathem tics frequently. Two neople who
formal math recently reported terror.

tion to
fal reading of the problem provoked a reac

its :3;0 :giioced by a sense of its difficulty. *I ant&c!p:te.§
will enjoy this problem but may not make much progress.® o

ire a
of problem . It i{s do-~ble but will requ
i?;th:ttgtéf tyge th!gk I will have to guo through many tedius
decompositions.”

t either that the
d “do-able® was used often and mean

toblzg. H::: solvable or that progress could be nadeoztég
. derstanding the question. For one of the people who t:p a
::::0:, a person who rarely uses to:m;l mathem:;:::bizt:!ze ::8

he workshop, cons
who was telked into coming to t tioe time vas
ding of the problen. Emo
spent blocking the rea on acknouledges
denial. This pers
fedinced Y, avoldance o bout feeling bad so that "Even if
feeling bad but then tels bad a ble tiae nus opens recven, it
I could do it I couldn't, Considera 13 the abile Focailine
istory of problem solving fallures a
7.::aw:a: cﬁn:c!gusly) waking the decision to try to do t:z:
:oblan. nother solver also reported "I felt unhappy and he
gelt unhcppy about feeling unh;gpy.' tgmogizzzt:;nd’:gvfg:d o
each other. e ma £

;gfas:;3f£3t§3 extend effort on the problem. They had much more
commitment to do math,

lop a

H reading the problem, all began to deve

to d:::.ta dizgram vr to write some hypothesis. Th!: was :?:

beginning of a cycle of attention onkp:oblgzbie;tte::t::tggns i
tion by environment - attack on p -

g:lg!::t::v!tonmznt - problem - gaelf - problem - self, etc.

k, there was
reparing to choose a method of attac v
conl!gz::big gmot!on tied !n!u!th :2:: ::ga::ng.;ettf?:hleszfsg?
tain con
placed the gcoblem in a cer 8 hoxt bed spore. Pydevel of
difficulty and felt it would be chea g, " u .
ful. One solver says, an u
technique that was too power says, Songhos®
ees Then I'11 use Jordan Curve Theorem....
::2§{x.:::ft7 “Maybe an casier way." Another solver resisted g?t
finally made a grudging commitment to using calculus for & problem
entitled, “An Obvious Maximization."”

force was considered almost al.bad as using a

o “I'm annoyed because I can't see any other
::; pzzgztu;tzzihogotce and that would nct yield! for ms any
understanding of the problem...there must be an e?f e;luay.
Solvers wanted to find solutions that were genets bz: ug.
a too powerful method, brute force, or an “obvio

Using brute

Using
method*

brought forth comments of feeling embarrassed or annoyed,

notation,

imposition of ridiculous restrictions on oneself, for example,
one solver had Honsberger's pook in hand and was to “Use the
'Method of Reflection' to...", {Honsberger, P.78). The solver's
Ceaction was, 1 understand the problem but don't know tb(s
method...I wish I could read the chapter..." . Instead of sirply

reading the chapter, the solver tries to invent a Plausible
'Method of Reflection'.

Another solver spent long moments seemingly
feeling a 1ittle out of control of the ptoblem...lots of
Paraneterc...seenms to be a 1lot of ways to
Problem...I'd 1ike to clarify the problem by asking whoever wrote
it.” Finally with a forced air, vy could break {% up i{nto cases

nyself and come to 9riPs on my own terms and get partjal
solutions...got control back."™ -

aimless. *I'm

Self imposed testrictions would slow a gsolver down wupgi}
there were reports of, “1'p squandering time. I really haven't
done anything.” fthen there would be & squaring of the shoulders
and a businesslike assertion to “...take a stand and try to prove

it ..." even though this might mean grinding out a meaningless,
albeit correct, solution.

INVOLVEMENT WITH THE PROBLEM K

ince commitment was made to attempt the

problem, there was
a lorelai seductivenaess about it,

a delicious slipping off into

another worié. Snlver became oblivious to self, observer, or
environment. This total immersion was a wonderful release from
daily 1ife. Poland (CMESG, 1985%) used mathematics to help him

fgnore the pain of an {llness, Some people use the other-world
quality of doing mathematics to avoid interaction with
Mathematics can help with depression as the famous mathematician
Kovalevskaya said {p a letter: “I am too depressed...in gsuch
moments, mathematics comes in handy, and one enjoys the existence
of a world completely outside of oneself.” (Knopp, 1985),

Mingled with the charm of seduction there was a dangerous
quaelity, a frightening isolation if one stayed immersed too long,
Rosamond (1982) glves examples ip Wwhich the solver feels consumed
by a too dominating wmathematics. As one mathematics graduate
student said with tears in his eyes, "what do you do {f you are
88 - 984 mathematics? If you've let yourself become consumed by
mathenmatics 80 that that {s ywhat you are. And then you want to
let someone get to know you. What do you do when You can'‘t
explain that “much of yourself s *hem?® The presence of the

observer couforted the solver and lessened the dangerous quality
fn the isolation.

There was a letdown feeling of disapointrent ff the solution
came so caefly that little emotion needed t¢ Lo invested in {p
the problem, Typical is the remark, "The problem must have been
too easy, I got it, So what's the big deal? 1 fae) let down.”
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or "1 was fun but not intense because not a challenge. 1 feel
let (own because 1 didn't spend a ot of emotion." The
complexity of the problem came like a revelation to one sclver
who then responded with a BIG smile. Overall, the amount of
satisfaction with the problem correlated diractly with the
intensity of concentration. The perceived level of difficulty of
the problem also influei:ced sztisfaction and this will be
discussed later.

However, one cannot maintain a constant level of intensity
throughout the solving of a problem. The use of notation in a
titualintic menner nrovided a “bresther” or moren * 9f relaxation
while allowing the solver to recwain in the “othe - .orlav. When
no progress was being made on a problem, the solver remained in
the intense state by writing out some formal routine. Some
solvers would rewrite the definition of the variable. One solver
began, “There are two cases: a} the problem is solveable and b)
the problem is not solveablé.® Almost everyone used x's and y's
at one time and then decided to switch to a's and b's (or vice
versa) . Some would say, "I'm going to try induction.” and then
write out the induction hypotheses. The rote writing out of
hypotheses or the rote switching of variables sfforded a 1lull
within  the other-world state and continued the flow. fThe
importance of these rituals was to help focuu on the problem. To
sit too long without progress or a ritual meant the solver would
think about self again.

Other pauses also bump one out »f concentration.
solver paused

When the
overlong in appreciation of some success, then

atrention tended to turn to self or environment. The jolt of
finding a counterexample to a hoped-for truth caused one to
notice the ticking of the clock or the coldness of the room.

Extended frustration of methcd caused recall of poor geometric
vigsoualization in the past and then embarrassment. Attention was
divizted from the problem to the sesf. This usuvally was for a
brief amount of time, less than a minute. Solvers would 1look
around, sigh, stroke the pen, scratch, talk a little an¢ then go
back into the problem.

Most xolvers were engrogsed in the problem when time was
called and these people were jrritated at being interrupted.
They almost 21l mumbled "I'll continrue later.* Solvers who were
in an attention-outward part of the problem-solving cycle just
prior to time being ralled generally sat back and waiited out the
time. They did not work on the problem further whiie waiting but
mentioneG that they would return to it later. There was
reluctance to allow oneself to get lost in a trainm of thought and
then yanked out of it.
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IMPLICATIONS FOR THE CLASSROOM:
VARIABIES THAT INFLUENCE ENGAGEMENT

The primary goal ol our exercise is to improve classroom
teaching. It would be useful for a teacher to know what a
particular emotion looks like. ®or example, a teacher who knows
that yawning is a8 release of nervous tension and not an
indication of boredom have an immediate and obvious clue that a
student needs help. (And the teacher knows not to get personally
insulted by the yawn.) In the opposite direction, the teacher
who wants to indicate positive emotions to the studerts would
know how to do it beczuse he or she would know what they 1look
like.

To this end we took notice of some physiological indications
of emotive arousal (flushed face, sweaty pzlms, muscle tension,
etc.) and.of body movement (twitching, sighing, laughiag, etc.)
but more work should be done he: 2 and these indications are not
elaborated on in this paper.

We found that overall satisfaction in problem solving is
directly related to the intensity of engagement with the problem.
The engagement is influenced by several variables: the nature of
the problem, the perceived usefulness of mathematics, the role
of the observer, the use of mathematic: :.:tuals, and the testing
situation. Each of these variables wil. be discussed along with
-their implications for the classroom.

NATURE OF THE PROBLEM

All solvers were more encouraged by harder problems than by
ones marked "obvious® cr ones perceived as easy. There had to be
a sense of value of the problem, not that it must be directly
applicable %o daily life, but rather that one needed to think in
order to understand the problem. I1f one could get the answer
just by asking someone else or by looking it up then that made
the proktlem artificial and was almost an affront to the solver.

Surprisingly, solvers felt threatened whenever they saw the
words, "Clearly", "It is easy.", or "Obviously"”. Most felt that
teachers should not say, “This is easy.” and that textbooks
should not 1indicate the easy exerc’ -es. Solvers gometimes
worried that the problem looked so simp .. They felt they were
missing the point and that their solution was not elegant enough.
One solver found three solutions by varying the constraints and
then felt less humiliated.
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One solver exhibited obvious arousal with eyes wide open,
clear face and a slight laugh. "Hey, there's an infinite
process...” Exploration didn't bear out infinite process and then
there was "That was neat. What was the problem?" together with a
clear drop of interest and rather emotionless settling again into
the problem. The challange of the infinite process
stimulated playing around in the "math-world.”

The math-world 1is a mental out-of-body arena of intense
concentration in which a person can play with ideas. Trivial
problems do not mcke good play-mates. One solver's most
satisfactory experience of problem-solving came after having
spent a week on a problem only to have the professor tell the
class that the problem was not solveable.

Solvers felt initial relief at seeing an easy problem but
vere quickly bored, disappointed or insulted. The classroon
teacher must pay careful attention tc the quality of problems
oftered and shouid not label them easy or difficult.

USEFULNESS OF MATHEMATICS

Doing mathematics is seductive but one must allow oneself to
be seduced. Three different participants at thre=z differen.
sessions (all women) felt that going off and doing mathematics
was a luxury. A teacher of older women sa’d she had to convince
her students that they were not squandering time while problem
solving. Women are always productive. They even knit while
watching TV. She got around her stuuents' hesitancy by saying,
“I'm going to show you some games to teach your kids and improve
their math.”

The notion of usefulness was mentioned by only three women
but it 1is a ronstruct that has been singled out as the most
impurtant attitudinal factor in decisions to take asath classes
(Sherman and Fennema, 1977.)

Usefulness was elaborated on at length by one solver waho
vas able to solve the assigned problem {n a short time and with
no intense engagement. The solver was disappointed and felt
letdown. It was not clear if v.e following remarks would have
been nade had the solver been given a more engaging problem. I
asked at the time but *“¢ solver was very agitated and insisted
that another problem w2 } have made no difference.

"What would have beeen a meaningful problem?
How come I'm not satisfied? I had an expectation
about solving that problem that did not get fulfiilec.
It didn't make me happy. There were some moments of
tension and some of excitement but not intense. It was
encertaining like a grade C movie.
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“Math has no social relevance to me...l am willing
to solve math problems, even ready but it feels
completely disjoint from what interests me. I still
love it (This solver has a Masters degree in math and
is an active MD.) but its importance seums miniscule
comppared to world problems...beautiful but frivolous to
use my mnind in this way.® (It would be useful for
other people to do math but there were more pressing
issues for this particulax solver.)

Usefulness of mathematics in terms of careers or its
sometimes theraputic value as a means cf escape is an affective
variable that may be easy for teachers to ‘nfluence, Teachers
can present information about the mathematics required by various
careers as w.il as the mathematics courses that should be taken
to keep opticns wpen in the future.

THE USE OF RiJUALS

The use of formal routines that keep one's attention on task
while providing a sort of restful interlude speaks directly to
the classroom teacher. Students must have a comfort with
notntion not only becausd the notation itself somctimes points
to the soluticn but because that comfort sustains concentration.

ROLE OF OBSERVER

Coatrary to almost everyone's expectation, having someone
observe while working the mathematics was positive. At first,
some solvers felt less inclined to free assoclate with ideas in
front of an observer who might have the problem already all
figured out or the solver sometimes felt that the obscrver must
be bored. Some solvers wanted to talk things over with their
observer or would 1look up at the observer hoping for
confirmation.

1t turned out that the presence of the observer was an
impetus to persistence in doing the problem. This is a very
important point. Liking the problem was directly and positively
related to the awount of tiue spent working on it. Almost
everyone liked their problem more the longer they worked. Those
that did not li*e theixr problem initially began to like it after
all and to get interested in it. Without an observer, those
solvers might have quit.

Bein~ observed evoked otuer feelings. As noted earlicr, the
presence f an observer reduced the feeling of danger in
isolation that 1lengthy ~amession in the problem sometimes
brought. There was a feeling of honor. “1 felt honored that
another peson was taking the time to observe me.* Another
feeling was intimacy. "It felt intimate to have someone commited
to watch the workings of my mind.*

While more emotion seemed to come from being watched, it was
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also important to be the watcher. Watching seemed to take away
some of the secret charge of the observer's own problem-solving
anxieties. The observer could recognize his or her own feelings
in the other person and see how the feelings influenced their
actions. Watching another person struggle with anxieties made
the solver think, “Why don't they just get on with it."

One participant reported, "“The most poignant part of the
exercise was hearing the observer say what I1'd done. I did not
feel intimidated. I didn't get any of the bad response I
exzected. The observer demystified my emotional and intellectual
engagement by simply listing what I did: 1, 2, 3, 4. This cut it
down to size, gave it true proportion."

This exercise of being (bserver then reporter, then switching
to being solver then recipient of report should be explored as a
means of eliminating math anxieties in our students. Tne real key
is the switching. This exposes and throws out the power of
negative feelings while encouraging positive ones.

It should be noted that no one argued with their observer.
A few points of clarification were made but there were no
misintexpretations. 1t is possible that finer gradations or
other categories of feelings can be made, but there was good
corresp: tdence within our vocabulary.

THE TESTING SITUATION

Concern 2bout the nature of the problem carries over into
the testing situation. One solver cummented on the problems
found on math _ests. “A test is an almost random set of narrow
problems where one thing must trigger apother. It is not abou:
figuring things out. Test questions do not show that math is a
process.” This solver had as a partner a professional research
mathematician. The solver was not intimidated by being observed
even though the problem was not solved because “The observer
could hear that I have math training. He could see how my math
mind works, how I assimilate informatjon, manipulate, and use au
asrsenal of strategies. This is so much different from taking a
wmath test where I am not tested on how my mind works. Oon a math
test, I could expect not to be able to show what I know. I would
feel shame."

Part of almost any testing situation is a time constraint.
Having only 15 or 32 minutes arnoyed and inhibited these solvers.
Some reported feeling “hemmed in...I do best by playing
around.. .ordinarily would draw pictures and really
understand...build up a pattern.® Another felt pressure to
categorize a golution method quickly. “without a tjme constraint
! probably would have been more impulsive...would have guessed
ard then worked backward. I felt forced to be more systematic,
meticulous, more step-by-step ar3 mechanical. I think I coulgd
have solved this in a shortrr amount of time if there had been no
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time limit."

When the timing in itself counts, it is as though what the
problem means in itself is not enough. Perhaps the discomfort of
a time constraint forces one's attention to be divided between
the math-world and present time. Not only are different methods
of solution chosen at the onset of the process, but also the
total immexsion into the prchiem-world is not as pos.ible or as
deep.

CONCLUSION

It is important to state that a basic assumption of this
experiment is <that we professional teachers and mathematicians
have at least the same feelings that studencs have. We may
experience a difference in inteusity (less anxiety, _ more
confidence) or have other feelings in acditiou (sense of
commitment) but overall how we respond gives an indicatiop of how
our students respand. A mathematics educator efused to
participate in our exercise saying that it might be worthwhile
for “pe:zsonal growth® but that it would give no insight into how
students feel. He believes tnat teacher feelings are completely
diffcrent from student feelings.

But imagine your feelings if the Chair of your Math
Department suddenly announced that you must take a test. If you
have not taught a particular course in the past two years you
must pass a test before you can teach it. What course are you
scheduled to teach that you have not taught recently? What is
your reaction %o your Chair's announcement? You are not heing
tested on how well you review the materal during tho semester or
on how carefully you prepare your lessons. You are not being
askeé to share ideas with a colleague. You are being evaluvatud
on questions someone else has chosen and already knows the
answers to. I think your reaction to this thought-experiment may
show that seasoned teachers can feel anxiety in a test situation
similzr to what their students feel in their test situations.

- The act of knowing is not antiseptic; rather it is wripped
in feelings. It is the enjagement of feelings. The primary goal
of our work is to iwnrove classroom teaching. Thi. paper
indicated only a few of the emotions inseparately connected
within mathematical activity and specifically calls the
classroom teacher's attention to the nature of th~ problems, the
perceived usefulness of mathematics, the role of observer, the
use of mathemati:s rituals and the testing situation.

88




- ERI

Aruitoxt provided by Eic:

1

REFERENCES

Canadian Mathematiivs Education Study Group Announcement for the
1985 Proceedings. Universite Laval, June 1985.

Learning Mathematics: The Cognitive Science

Davis, R. B.
Norwood, NJ: Ablex, 1984,

Approach to Mathematics Education.
Gardner, M. Mathematical C.rcus. Net York: Alfred Knopf, 1979.

The Scientific American Book of Mathematical Puzzles
New York: Simon and Schuster, 1967.

Gardner, M.
and Diversions.

R. Mathematicai Gems: Dolciani Mathematical

Honsbherger,
The Mathematics Association of America, 1973.

Expositions.

Honsberger, R. Ingenuity in Mathematics: New Mathematical
Library. The Mathematics Association of America, 1978.

Knopp, K. “Mathematics as a Cultural Activity.* The
2o _Nematical Intelligencer Vol. 7, No.l, 1985, p.7.

Lazarus, R.S., Kanner, A.D., and Folkman,S. tmotions: “a
Cognitive-Phenomenological Analysis.® In . Plutchik and H.
Kelle:man (eds.), Emotion: Thecry, Resezrch and Experience,

Vol. 1 New York: Aczdemic Press, 1989.
Mott-Smith, G. Mathematical Puzzles for Beginners . and
Enthusiasts. New York: Dover Publicatlons, 1954.

Papert, S. Mindstorms: Children, Computers, and Powerful Ideas.
New York: Basic Books, 1988.

Perry, W.G., Forms of Intellectual and Ethical Development in
the College Years: A Scheme. New York: Holt, Rinehart, Winston,

and Poland, J. “The Role of Feelings in Le’ :ning

Rosamond, F.
CMESG/GCEDM Proceedings: Unjversite Laval, June

izchematics.”
1985.

Rosamond, F. "Listening to Gur Students.* {in David Wheeler (ed.)
For the Learning of Mathematics 3, (1) Montreal: FLM
Publishing Association, July 1982.

*Beyond the Purely Cognitive: Belief Systems,
and Metacognitions as Driving Forces in
Cognitive Science 7, 1983.

Schoenfeld, A.H.

Social Cognitions,
Intellectual Performance."
“The Study of Mathematics by High

Sherman, J. and Fennema, E.

School Girls and Boys: Related Variables." American
Educational Research Journal 14, 1977.

Silver, E.A.(Ed) Teaching and Learning Mathematical Problem-
Solving: Multiple Research Perspectives. NJ: Lawrence Erlbaum

Associates, 1985.

S 89

hepena o

eyes

oheuldess
eeel

[

Ll'

dreed

Se

complacent

HENTAL iMAGES

etomeoh

dretictient

Shapee

edremelin cvueh

hentsle

sense of tamiliscsty

doty

slur et viesen

etuck

ivppectes

cuteen

niabece
eymbelse

eweaty yasime.

uncrestive

cagid.

*ncevcaged

fevetrated

tn~contce)

incchatge.

tight or tlight eyndcome

teslatosn

831 aiene,

ionfoctable

stemaeh bdutiacrllsee

senes of uwrgeney

ssnse el enjeyment

espleding

hoveaent
espanding.

eenee of eupherie

senee of impending C(ajllure

'ense of deing samething weetyl

shrinking.

%
N}

sense o( paranesa

desice (o7 apprecasl

coentstdent

£OLALING, tevelving

woving
other

tecl n the minecity

elatec

sense of helding beck

sutpcise

avéjtery

den‘t knew sneugh

tense of persistence

smel}

decicte te finleh Clcot

*'nee of sdequate enecyy

sennual

desicte te stnich last

iende et elatien

Jigh

deslite net te de nettoes

senee eof sign:ticanee

lawghter

desice te de moeticed

Pride I1n sceomplishaent

.
L3
-
a
-
-
)
e o
® e
» [ A
& =
- -
& .
. . &£
- - s
- e 3
3 & =
- - o
.
] €
- [
- -
.
[ d .
€ w .
- - -
- [N -
- » e
s « 9
3w
.
- -3
s ¢ ®
¢ & e
- - »

teeling ot heving fun
vense ot SPPtePciitonses

ve,
O

wercy sbout making mistake

viger

Sall (olutehed.

impu.sivensss

ether

(esling o? beceden

sense of evrieesty

e d




WORKING GROUP B

i . THE PROBLEM OF RIGOR IN
: MATHEMATICS EDUCATION

GROUP LEADERS:
GILA HANNA
‘ LARS JANSSOH

REPORT OF WORKING GROUP B Larz Jangson & Gila Hanna

THE PROBLEM OF RIGOR IN MATHEMATICS, EDUCATIUN

Funk and Wagnall’s Standard Dictionary {(1980) si.ec the
following definitions for the term "rigor:®

1) The condition of being stiff or rigidi;
2) stiffness of opinion or temper, harshness;

3) exactness mithout allowance or indulgence,
inflexibility, strictness.

Thesa dictionary definitions of "rigor" notwithstanding,
the group did not cseem to have a clear 1dea of what the term
means, although it was evident that we wished to avoid its
association with mortis. In order to focus our discuscions we
attempted to follow an outline which directed us to 1! the
nature and function of rigor in mathematics, and 2) the place
of rigor and proof in teaching.

As an exercis2@ to be completed before the second session,
each member of the group was asked to rank order four different
proofs#* of Pythagoras®' theorem with respect to three criteria:

i* Which is the most rigorous?
ii) Which is the mos’. convincing (to you)?
iii) Which one would you use to convince a nonmathematical
friend of the truth of the theorem?

It turned out to be very difficult, 1f not impossible to
reach any consensus on a rank ordering of these proofs in terms
of how rigorous they were. This led to a discussion of what
one means by the term ' the context of our deliberations the
term *"rigor* referred to rigorous proof). Rrgorous proof is
the procedure used in an axiomatic system to demonstrate the
truth of a theorem in that system. The system should comprise:

1) a number of axioms
2) rules of inference
3) theorems (derived truths).

It was immediately recognized that this ideal can rarely
be reached in practice with respect to major branches of
mathematics in their entire’u. Rigorous asiomatic
presentations of small systems, e.9., games, were, however,
recoynized in sub:edquent discussion as being more easily
attainable. We thought it impPortant to speali not of absolute
rigor as the proPerty of activities within a well defined
system, but of degreee of rigor within a system that 1s not
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comple tely defined. There were suggestions for definitions of
*morge or less rigorousi®

1. An argument is more Or less rigorous to the'degree to
which it ig free of unstated assumptiong. Th~ more it uses
unstated -ssumptions the less rigorous it is.

Z. A purported proof is rigorous if it ic free of holes
and it cannot be attacked, i.e., if nothing can be added to the
chain of reasoning to improve it and if all of the analytical
s*2ps have been made explicit and are correct. It is "“lesc*
-igorous to the extent that these conditions are not met.

3. When the context of the proof is not analytical, e.9.,
proofs without words, the concept of more or less rigorous is
not relevant. (Some aroup members viewed such a "proof® as only
a schematic outline uhich could be expanded into a proof in
various ways and of various dearees of rigor).

In the course of the del iberations we found out that

- Some of us are *unconcerned with rigor® in the teaching
of mathematics——and unapologetically so.

-~ The authority of known mathematicians and of respectable
toxthooks or publications play a large part in our acceptance
(although not in an absolute sense) of proofs, even in the
absence of all of the analytical stees.

- A detailed and more rigorous pr >f may enhance the
understanding of a theorem, but it also may hinder or
contribute nothing to understanding.

-~ The dearee of rigor desired seems to be a matter of
taste and Judgment derending on context and content. Demands
for rigor rise and fall in history and depend in part on the
function of the prooft ritual, validation, convincement, . . .

- The fact that mathematics is a social activity occurring
in a social context and the need to communicate mathematice are
very important to the notion of a desired degree of rigor.

- rigorous argument may exist in other disciplines——-it is
not peculiar to mathematics.

The g9roup moved in the second session to a discussion of
reasonable expectations of high school graduates regarding
their knowledge of proof ard rigor. Some expectations were?
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- the realization that conclusions must be gustified {and
that this is part and parcel of mathematical activity)j

~ a knowledge of the role and function of axioms,
defini tions, theorems, proofs, and conjectures, and the ability
to use these properly in a chain of reasoning; '

- the ability to develop and sketch an argument/proof and
the ability to defend or attack an argument/proof;

- some sense of the social conventions surrounding proof
and rigor, €.9.y the ability to distinguish between what
constitutes a plausible argument and what constitutes a proof$

- we should be more concerned with rigorous thought and
argumentation than with stylized written proof.

With regard to developing the above acslities and
attitudes in students, some felt that

- mathematics which is exclusively content (as opposed to
process) oriented is of limited value;

~ that in order to develop the notions of =2roof and rigor
2 teacher may well have to rely on traditional content as a
vehiclel

- a useful pedagemgical techniaue is to

- convince uyourself
- convince a friend
= convince an enemy.

The final session focuused on wha* we could say to
teachers' groups or curriculum committees regarding rigor.
There was general agreement that teacners chould:

1) emphacize the need for Justification in drawing
conclusionsi

2) teach proof procedures in context rather than in
abstract formi

3) provide students with oppoctunities to work on problems
and situations which iead to observation of patterns,
conjecture, Justification, and looking back.
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; 4) try to adjust the level ¢f rigor (or of sophistication
) of the procf?) to the mathematical abi’ity of the
students.

Discussion on the content vehicle revealed that most
mathematical topics were suitable for obtaining these four
obJjectives. (Thercs were a number of a number of pleas for
qeonetry at the Junicr or senior high school level.)

A nusber of short readings were distributed and/or reccmmended

during the sessions of the working group. Those that are

available in other sources appear in the attached reading list,
. Post-conference comments on rigour are provided by David
Hheeler, Ralph Staal, and Jorg Voigt.

#The proofs were

1) the standard proof given in Euclid

2) the Chinese “proof without words®

3) a proof using the inner product of vectors

4) the proof using the altitude to the hypotenuse and
similas triangles.
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POST-CONFERENCE COMMENTS ON RIGOR

by David Wheeler

Much of the discussion I found interesting, stimulating and
helpful, yet I am left with a feeling that perhapc it was a pity
that the focus of the group was on rigour rather than ony sayy
proofy mathematical reasoningy, or some other more general
conception. Rigour in mathematics seems such a speciaiised
notions far from what ¢~ .ears to me to be my central concerns
about mathematics or mc:hematics teaching.

Probably the difficulty for me is that rigour in mathematics
is essentially a technical matter. There is the formal apparatus
of axiomy postulates; definitions and theorems, all embedded in a
Particular mode of deductive logic. Now I would grant that this
apparatus has had two general consequences within mathematics: it
has (1) encouraged some mathematicians to work on a clarification
of the foundations (Peanc is a good case in point) and (2)
generated considerable activity in this century dround the
rowerful concept of mathematical structures (Pourbaki and so on).
Even say the majority of professional mathematicians proceed on
their wauys ignoring the matter of rigour, and I am forced to
wonder what possible application this technical stuff can have in
the education of students, of novices, 9f pzople whose principal
concern should be with knowing how to mathematize.

The pity of it is that the very special methods of ensuring
{(or approaching) mathematical rigour actually tend to reduce the
attention educators give to rigour in its more general sense, that
of "clase reasoning”. We can speak of rational arguments in any
field as being more or less rigorous, and we sometimes refer to
Particular persons as "rigorous thinkers® {Qr not, as the case may
be). This general appreciation of the value of rigour is very
important, it seems to me. It gives a high valuation to such
things as weighing evidence, being clear about one’s assumptions,
being careful about the validity of the steps in an argument,
explicating the conseauences of an argument even where these are
not the onms hored for, and so on. Some competence in this
difficult art would serve any adult. I emphasize the word "art" to
indicate that close reasoning is (in the present state f our
knouledgay at least) something only a person can produce. The
slight amount of evidence that computers can presently generate
rigorous proofs in fact dismays me because it tells me that
important ingredients of the process are being ignored.

It has often been claimed that exposure to mathematics helps
students acquire general thinking skills. I believe that it could,
but it hardly ever does. Mathematics is still largely taught, in
spite of centuries of advice to the contrary, as a body of skills
that can be imitated without understanding. Taught this way it
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actually damages students’ thinking powers (as can be seen i1n the
substantial number of students who have become convinced that they
are mathematically stupid). There is no doubt that mathematice .
could be used as a medium for encouraging careful thought. Put how
often in traditional classrooms does one hear teachers make

interventions tha* promote attention and foster careful argument?

- Look at what you have done!

- Listen to what you are saying!

- Is she right? How do you know?

- Are not "this* and "that" contradictory?

- Would what you have said still be true ir you
substituted *"this" for "that"?

- What have you forgotten?
- Can you convince John you are right?
- Do you need to use so much energy? Find a simpler way.

- Do not tell him! He can decide that for himself.

Mathematics is a very suitable medium to use in encouraging
students to exercise reason since it relies very little on mature
interpersonal experiences or sophisticated intellectual concepts,
which students don’t have, but a lot on immediate perceptions and
fundamantal mental operations, which they do. (How el€e could
there be prodigies?) Once the habit of reasoning in mathematics
lessons has been taught, arguments can be scrutinised and revised
and made more rigorous. Eventually the students will come to see
what a proof is. But this is a developmental process that takes a
number of years. To offer the model of mathematical rigour

enshrined in the axiomatic approach to school! studente is totally
inappropriate.
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.by Jbrg Voigt

. « . I enjoyed the working group and found the scessione
quite interesting, especially because I was forced to think about
the .connections between rigor in mathematics and rigor in
mathematics instruction. I agree with the report and will try to

sum up my ideas of rigor.

I think that rigor in the presentation of mathematics <hould
have little relevance to mathematics education: but rigor should
ve important for the discourse processes in the mathematics
classroom. There rigor could be an implicit element of the
discussions. Somewhere Hans Freudenthal wrote: "When does
reasoning begin with the pupil? Before it is termed as proof or

the like."

With regard to Vygotsky, Wittgenstein and others the
development of m~athematical thinking depends on the experiences
gained by the pupils in the social interactions between the
teacher and the pupils. One task of the teacher is to organize
mathematics instruction in such a way that the processes of
arguing interactively constituted are preliminaries of individual
rigorous thinking. Surely, the teacher should have Some knowledge
of logicy, but the problem is to see the lines of argumentation in
the classroom processes and tu organize them. The problem is the
connection.of the knowledge of logic with the practice of teaching

in a specific context.

I have similar findings in mathematics classrooms to that of
Thomas Russell in science classrooms (J. of Research in Science
Teaching, 1983, v. 2@, n.1)% Often the dynamic of the social
interaction replaces the rationality of argument:tion. In
classrooms the teacher's authority was establiched for the social
organisation of teaching and learnings but it is at the same time
a menace to the learning process.

1f I had to work with mathematics teachers in this context, I
wortld

- make them solve mathematical problems in little groups

- videotape the group work, and
- let the teachers reconstruct the lines of their

argumentation.

In this case, the teachers could notice that it is importabt and
very difficult to do mathematics rigorously with other pPersons.

I concede that mathematics instruction could and should be

not an image of the ideal practice of reasoning in the disczipline.

But the teacher’s authority should not be a substitute for the
rigor of mathematical rationality.
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by Ralph Staal

I found much of the discussi i
f € on confusing, becaus

:he chairman bega? by pointing out that “rigo;' isd: seT;:nggh
ag;giufgme Participants continued to uce it apparently in an

s sensey as in "I don’t believe in ri i
This absoluteness could be an a ven ét e caoyele

- cceptable convention 3
the fact that it wasn’t said what i Lo agPt for
s this absolute sense [

analogy would be when e 5 teaperatn
inoaodu would, d comeone cays "I don’t have any temperature

Another example i i .
distinguish between: of a@bxguous terminology was the failure to

1. The degree of rigor of a proof that P impliec @

2. The degree of rigor .
of ~ proof of @ —= this :
. R d proof
w@ere P itself has been established on either more or lec using Py
rigorous grounds. ess

rnowi:getg::fgrigci is ?haF inl(l) the dearee of certainty of ous
I rue 1s irrelevant, whereas in (2) it isn’ *
This makes a great difference in talkino about rigo: ;: isn7t.

mathematics. Unfortunatel it 3 .
effort to maintain the disz;néti;:?es a good deal of persistent

With this much variation in & i i
ieaningy it was not ici
;P?: there’was NO consensus as to the ra;king of fgurs::gg;;zg?
dthagoras’ theores with respect to the three levels of rigor

(hardlzoo:;i:is:uss;ozs; there ceemed to be a strong undercurrent
0: but felt to be *here) of tin
the ar-ociation of mathemati ith ri reme] L Cyohaw <hat
. ics with rigor (pre i
*being very rigorous®) wae i P e of opeaniig
ery € naive and was i1n need of ti
In my orinion, this point of vi i € of cmapm
oPi i view i€ often the result ‘Suk-
through imperfections® b i p of o utmdaun
- 4 which one can show t
thing as truth, or beaut j ivity aatsoarC ke o such
h . Yy Or objectivity, or justice, or
;;r;::ééza:?z;haggsworfh talking about. The study of'chW*utions
C marke one aware of the elusiveness -,
gr perfect rigor, but a thoughtful percspective on thi?oéa:&ZSIUte
evertheless puts emphasis where emphasis is due, namély PE the

extremely (perhaps even uniqu i i
oathonats coparhaps PurEUEd.q ely) high degree of rigor with which

modifwl:: this perspective as a guide, I can see no resson to

y e r919 of mathematics in education as stemmir to a ]
dggree from its ascociation with a relatively high dec -ee of arae
rigor. (The work of Lakatos, so often misapplied, ia w opinion,

does not change this one bit—-rather jt chows how the search for
nitions of

greatey ¥ ing leads one to more more rigorous defy
I an
d 190ro 2
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The main speakers at the meeting,

Ross Finney and Alan Schoenfeld,
each joined the working group for

one of the sessions, X

REPORT

Initially the group discussed personal experiences, ) !

indirect, they had with teaching mathematics using ¢
software, The following

conversation of the first evening.

1
Careful selection of software is necessary because: .

a) there is a lot of expensive software that has little educational s
valug;
b) of the current curriculum,

At this sarly stage in utilizing .
computer as classroom teaching/learning tools, ic must fit the
existing curriculunm.

Even good and poverful softwa
effective uge. Teachers, both p
congiderable thought ip preparin
teaching of mathematics,
growing body of evidence supporti

re does pot necessarily lead to
re and in-service, peed to devote




1) coamputer aided teaching will be successfully adopted if necessary
reaources are available, and

b) computera aeem to be very versstile teaching aids and there are
no grounds (at this time) for strongly recommending any
particular style of use.

These suggestiona as well as the developing nature of the entire
field of computer use in education give negligable guidance and
direction for microcomputer use in teacher education. The use of
exemplary material in the average classroom with the average teacher
was briefly conaidered. Several group nembers described sessions
they had observed using the Geometric Supposer, a plece of software
they considered exemplary. In each instance it was suggested that
the scenario did not typify the average mathematics e¢lassroom with
the average mathematics teacher. The developers and ugers of this
software in these situations perceived that, because of its power and
versatility, students could be successfully drawn into an inductive
exploracion or search for geometric truths, after which they would
concern themselves with developing convincing deductive arguments
(proof). They were behaving as geometera. Becauae of the features
of the Supposers, in that one has a draving and measuring toal which
permits the operator to quickly and accurately produce, meaaure and
alter geometric conatructions, much of the drudgery and inaccuracy
related to ruler and compaas conatructions is avoidable. Equally aa
poverful is the abilicy of this aoftware to "remember" the curreat
construction and repeatedly repeat it upon request. This potential
permits geometric exploration and pedagogical approaches for teaching
geometry that were previously imaginary. Unfortunately many of the
seemingly best mathematically qualified, based on the amount of
pathematica studied, mathematics teachers have never personally
experienced léarning mathematics in this way and thus fail to
appreciate exciting new possibilities,

As a result of the initisl general discussion ve decided to begin by'

exanining some of the software material available to the group. We
asnded up devoting the rest of the working group sessions to a8
discussion of the following software packages:

Apple Logo (Apple)

Algebra Arcade (Wadsworth)

Interpreting Grapha (Conduit and Sunburst)
Geometric Suppoaer -~ Triangles (Sunburst)
Calculus Student's Toolkit (Addison-Wesley)
Graphical Adventure (Saga Software)
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Graphical Adventure is available only for Coumadore 64's while the
others were all Apple Ile packages (although some may be available
for other microcomputers).

a software package as well as discuss it
This working group found its time
The group did not deliberately proceed
We comparad and contrasted features
as the discussion proceeded. The software that invariably drev the
greatest attention contained what the group considered to be powerful
features. Invariably these necessitated a high, active participation
rate with the operator in control. For example, the geometric
supposers are able to draw, measure and repeat constructions only
under the direction of the operator. vithout these directions it
will not do anything and the potential of this type of software can
only be explored if the operator is able to interact with it to take
advantage of these features.

It was noted that to examine
in scme depth is deceptive,

quickly spent in the process.
linearly through each package.

During one of the sessions Ross Finaey demonstrated the Calculus
Student'a Toolkit, a software package that he was involved in .
developing.

Sr. Roaalita Furey familiarized the group with thé Graphical
have considerable potesntial for the
Unfortunately it ia

Adventure which seemed to
aecondary curriculum (perticularly at $14,95).
only available ror the Coamodore 64,
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Geometry via the Computer

) Appendix 1
: SOFTWARE INFORMATION Lesson X by Roland Eddy |
: 1. Apple Logo Apple Canada $ 150.00 The Mediums of a Triangle 4
. . |
' |
2. Algebra Arcade Wadsworth Publishing 34,45 '
L Co.
’ & Davis Drive ‘
Belmont, California /
94002
T 3. Interpreting Graphs Conduit 45,00 (U3)
The University of 1
Towa
Oakdale Campus . . .
Jowa City 1. The medium AD bisects BC,
Towa 52242 45.00 (US)
2. Calculate the areas of ABD and ADC. .
Conclusion? (Equal) ;
4, Graphing Equation: Conduit 45,00 (US) . . .
(includes green globs) 3. Construct several triangles and their three mediums.
Conclusion?
. A )
5. Geometric Supposer Sunburst 99,00 (US) . )
(These are triangles, P.0, Box 3240 132,00 (CDN) i
quadrilateral and circle Station F F .
vergions as well as a Scarborough, Ont. ,
pre-supposer) M1W 929 ¢ &
6. Calculus Student's Addison-Wesley ? : g
Toolkit B D <
3 ?
7. Graphical Adventure Saga Software 14.95 (CDN) 4. .¥zgsgr§/§GADGDét2?§. Conclusion? ]
418 Gowlend Cres. ! H
Milton, Ontario §. Calculate the areas of AGB, GBC, GCA. Conclusion? )
L9T 4E4 (A1l equal)

6. Construct the triangle with sides AD, BE, CF and
construct its mediums. Vevify that their measures

are 3/4 AB, 3/4 BC, 3/4 CA.

e .
F g “D 3966 %
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Heron's formula:

a+b+c

Area = \/s(s-a)(s-b)(s-c). s% ———

Verify the corresponding formula

+
maQIl‘lb mc

Avea = 473/ s(s-my) (s-mp) (s-mc) o 5= Ta_

2
2 2 2 2 .
Verify: ma2 $mpS e m T 3/4 (a° + b° + ¢7)

Verify the inequality:

m, *m, +m. f; 4R + r , where R,r

< < ively. Devlin, Keith Micro-Maths: Mathcastical Problems and Theoreams .
. dius and inradius respective SCIO-TIatha: Tlatheaatical troblems and Ti
represent the circumra g

When does equality occur?
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THE ROLE OF THE MICROCOMPUTER IN

WORKING GROUP D

‘DEVELOPING STATISTICAL THINKING.

GROUP LEADERS:
CLAUDE GARULIN
LIONEL MENDOZA



The group was a follow-up to a working group in Vsacouver in 1983,

H . which had focussed its discussion on "the goal of developing F

: ) statiatical thinking for all" as well as on appropriate topics and )
methodology for a covre curriculum. The report of the Vancouver

working group can be found in the proceedings of the 1983 meeting

: of CHMESG.

2 L ‘
3

: CANADIAN MATHEHATICS EDUCATION STUDY GROUP The objective of Working Group D in St. Jjoha's was to investigate i
. JUME 1986 MEETING (ST. JOHN'S) the issue of how microcomputers could be used for developing )

.
statistical thinking. Among the aspects initially proposed for ﬂ
Report of Working Group D discussion were: software for tesching statistics,; graphical
repreaentationa of statiatical distributions; simulations of .
random sxparimanta; and learning probabilistic and ststistical
o The role of the microcomputer in developing : ;
° concepta through programming. The preliminary discussion on tha .
i statiatical thinking .
first evaning anablad tha group to determine the focus for the
|
|
|
|

threa thraa-hour aeaafions that followed.

by Claude Gaulin and Lionel Mendoza
The work and conclusions of the group csn best be summarized by

dividing it into three phases.

Phase 1

This phase raiseu the difficult question of what was mesnt by
“statistical thinking”. While nmo attempt was made to develop a
formal definition, the group agreed that the core idea of

statistical thinking was a comprehension of the nature of

1_1_1 representations, distributions, and inferential statistic, as

opposed to the ability to draw graphs or undertake statiatical
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tests, per se. Also, at this stage it was decided to focus on the

role of the computer as a teaching aid, and not as a computational
aid (as epitomized by statistical packages). It also became

apparent in the discussion that the members of the group were not

aware of software specifically desfizned to develop statistical

thinking.

Phase 2

In this phase the role of the computer was explored. The group

mostly discussed how it could be used to VISUALIZE statistical

idess and procesres.

(A) VISUALIZATION IN DESCRIPTIVE STATISTICS AND
EXPLORATORY DATA ANALYSIS.
Utilizing the computer here involves displaying a
variety of graphical rcprclcntationq (e.g. bar
graphs, pie charts, stem-and-leaf plots) on the
screen., A particularly effective use of
visualfization s having different data sets
SIHULTANEOUSLY DISPLAYED on the screen, enabling
students to interpret, discuss, and compare the
data. Alternatively, displaying the same dsta in
different ways develops an awarenes of the
advantages and limitations of different displays

and helps students to select the most convenient or

best illustratfve representation from among many

possibilities,
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ANIMATION can be an effective ald for descriptive
statistics and exploratory data analysis. The

ability of the computer to tuild up successive
representations as the data 1s entered [elther from :
pre-set data sasts or student-collected data sets])

gives students a visual iuage for comprehending the

nature of the data.

(B) VISUALIZATION IN "INFERENTIAL STATISTICS".
Animation can also be used in developing
{inferential statistics, an intuitive understanding
of hypothesis testing, snd the notion of confidence
intervals. An example would be using the computer
to select samples c¢f a given size and building up
the distribution obtained by rapeated sampling. By
varying sample size and the number of samples,
students can obtain a feel for the nature of
distributions and later on apply th:s to the
distribution for a test statistic.
NOTE: Whether the computer {s used to visualize ideas and
processes in descriptive or inferentisl statistics, the grougp
insisted that software should be INTERACTIVE, and not merely
DEMONSTRATIVE. 1I% should allow the user to ssk questions sad
indicate displays that he or she would like to see. Thus, the

interactive nature of the software requires a flexibility of

cholice,
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beyond that of merely zllowing the user to choose from a
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limited selection of options. It is important to stress that it
is the INTERACTIVE nature of the software and the DISCUSSION of

ideas generated by the display that leads to statistical thinking.

Phase 3

During the last working session, the group discussed the structure
of an introductory course in statistics for undergraduate students
in which the microcomputer were to be fully integrated THROUGHOUT
The suggested components for such a course were:

the course.

1) Data "display" and interpretation
[Computer displays and animation used]

2) Exploratory data analysis
(Centrality, box plots,...)

3) Transformations of data
{log, log normal,...}

4) Uncertainty
(Exploratory games involving repetition]

5) MNonparametric statistics, sampling, etc.

A variety of themes occurred throughout the sessiona, but tige did
not allow us to discuss thea in depth. The following are some

examples:

ERIC g
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1) The use of computers to simulate random processes.

2) The role of probability in developing statistical thinking.

This topic was raised at various times throughout the sessions.
The group felt that much could be accomplished in developing
statistical thinking without a detailed analysis of probabilistic
conc;pts.

per se. During these discussions s probsbility based

game designed to develop statistica’ thinking was presented by

Eric Muller. (See Appendix A).

3) The issue of decision making versus probabllistic thinking.

There is a fundamental difference in the role of probability in
the two situations. In statistical thinking a key aspect of
probability is the role of repetition within the situation and it
is 'assumed' that the situation csn be replicated. However, in
decision making, while some probsbilistic informstion sids in the

decision making process, it is ususlly not s repetitive situstior.

4) The relationship hetween computer games/activities and the use

of recal objects. How do students relate computer ‘'generated’

games/activities to similsr resl object games/activities? The
group was concerned that studeants (particularly young students)
might have difficulties effectively internslizing idess developed

in computer situations without experiences with real objects,

116
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In conclusion, there is one point the group would like to make:
the group felt that it would be interesting to do further work
during the CMESG mesting at Kingston, and suggesisd a working
group focussing on "Inferential Statistics for all High School
Students". 1In particular, such a working group would explore, the
following questions:
(1) How can the computer be used in conjunction with

other traditional types of teaching aids?
(11) Uhlé is the minimum axount of probability needed

to study inferential statistics?
(111) How can sizulation be used in developing

inferential statistics?

References

Holmes, P. (1984). Using microcomputers to extend and supplement
existing materials for teaching statistics. In L. Rade and
T. Speed (Eds.), Teaching Statistics in the Computer Age
(pp. 87 - 104). England: Chartweli-Bratt Ltd.

Inhelder, W. (1981). Solving probability problems through computer
simulation. 1In A .P. Shulte and J. R. Smart (Eds.), Teaching
Statistics and Probability (1981 Yearbook of the National

ouncil of Teachers o athematics, pp. 220 - 224). Reston,
VA: NCTM.

Kellogg, H.M. (1981), In all probability, .a llcrocOlputcr.’In
A. P. Shulte and J. R. Smart (Eds.), Teaching Statistics and

Probability (1981 Yearbook of the National Council of Teachers
of Mathematics, pp. 225 - 233). Reston, VA: NCTM.

Swift, J. Exploring data with 8 microcomputer. In V. P. Hansen
and M. J. Zweng (Ed>.) Computers in Bducatfon (1984 Yearbook of
the National Counc{l of Teachers of Mathematics,

PP+ 107 - 117). Reston, VA: NCTN.

Verhille, C., (Ed.). (1983), Proceedings of the Seventh Annurl
Meeting of the Canzdian Mathematics Education Study Grou
PP - 69), Columbus, OH: ERIC C earinghouse for
Hathematics, Science and Environmental Education. (ERIC
Document Reproduction Service No. ED 243 653).

Q

RIC | 117

110

APPENDIX A

+
Developing statistical Thinking

by

Eric R. Muller
Brock University

In this supporting document tor the Working Group “The role
of the Micro-Computer in Developing Statistical Thinking" we con-
sider an activity which has been used successfully with groups.of
students anywhere from elementary school to university. Although
the activity does not involve the micro-computer the group spent
a considerable amount of time trving to isolate *he conponents of
this activity which make it suvccessful. Such components could
then be structured in micro-computer simulation activities.

*Also submitted in modified form to the Ontario Mathematics
Gazette.
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1._.Activity to Develop Statistical Thinking
Materidls
1. 3oard with r positions, marked 1 to r, for positioning

wvoloured chips. The EBoard illustrated below has fourteen
nositions numbered above 1 to 14.

2 regular six sided die -- it is usi:ful to also have avail-
able pairs of the other four regular polyhedra (4. 8, 12 and
20 sided)

(or any other zIwo

At least r/2 blue and r/2 red chips

colours)
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Two teams -~ teams of two students ~ work well as each student
has a partner to discuss strategies. Ong t2am given red
chips, other team given blue chips.

The two teams will alternate placing one of their chips in
the piaces provided on the board. The aim is to have a chip
in the position which corresponds to the sum on the faces of
the two dice when they are rolled, eg., to have a chip in
position 8 if a (five and three) are rolled. Tc atart one
of the two teams is selected, it pluces one of its chips in
the position on the board which it believes is most likely
to occur. The other team then places one of its chips in
one of the (13) unoccupied places. This procedure alter-
nates between the two teams until either (a) all positions
on the board are filled or (b) one team no longer wishes
to place any of its chips, then the other team may occupy
all vacant positions.

The board is now set for n, {(say 25) an odd number of rolls
of the pair of dice. Each time the dice are rollud the team
which has a chip on a position corresponding to the same on
the dice records points (single points at level 1, points in
the square below the position at level 2).
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4. The team with the most points at the end cf n (say 25) rolls
wins that game. ¢
*+
5. All chips are now taken off the board and a new game may be
started.

6. The objective for each team is to find a winninig strategy,
ife. a strategy for selecting the pcsitions for their chips
which will provide the best chance for winning.

The following three levels of play suggest a natural progression
for statistical thinking. Some teams will not progress beyond
level 1. One must resist the temptation to provide solutions.
This activity provides an ideal medium for exploration and one
should only do the leading. We have always played with the fol-
lowing rules:

(1) Teams do not discuss their strategies with other teams.

(11) When a team believes it has a strategy for winning :.dis-
cusses it with me. I will not indicate whether the scrategy
is the best I know but I will change the team's opponents or
materials to either
(a) expose the possibility of a better strategy

or
(b) reinforce the team's winning strategy.

The followiag three levels of play are suggested:

Level 1

(Estimating probabilities)

Students to observe which outcomes, sum on
the two dice, are possible and conclude that
these outcomes are not equally likely

Objective: 1)

2) Student. to guantify the uncertainty, ie.
estimate the probablilities of each outcome

3) Students to develop the strategy oi s&l&cti-
ing those positions which maximize their
probability of winning.

Procadure: The team whose chip is on the position with num-
ber equal to the sum on the two dice Gets one

20
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Note:

Lzvel 2

Objective:

Procedurae:

Note:

Leyel 3

Objective:

Procedure:
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point, The team with the most points accumu-~

lated after n (25) odd rolls of the dice wins
that gane.

To reinforce winning strategies supply the teanms
with one 3ix and one eicht-sided dice -~ or a 12
and a Z0~sided dice and a different board! To
eXpos«¢ a non-optimal strategy change teams to
play against a team with the optimal gtrategy.

(Random variables and Expected values)

1) Students to discover the concept of random
variablesg.

2) Students to develop a winning strategy based on
the concept of expectation value, fe. a set of
positions such that the sum of products (of
probability and points scored) is greater than
that for the opposing team.

The team's whose chip is on the position with
humber equal to the sum on the two dice gets the
points indicated below the chip. The board
illustrated above shows 2 points for a sum of
8ix, 4 points for a sum of nine, etc. Tie team
with the most points aftesy 25 rolls of the dice

wins the game. Follow the procedures outlined in
level 1.

I have a number of boards, each with a different
sequence of points. By switching boards one can
either reinforce an optimal strategy or expose
one which is not optimal,

(The effects ot changing the number of rolls or trials)

Students expericent ‘to show that as the pn
umber of
trials is incremse=d in a gamé the probability of

winning the game with an optimal
increased. primal strategy is

The game is repeaved 20 tiges for a fixed

optimal stragegy and n rolls of the dice
where

114

From these resuits taz studears actimate the
probability of winning in each case and plot
thase veraus n. The probabllity of winning the
game in 2C rolisz should increase as n
increasecs. )
The reason for this is that it I3 apn applicatlon
of the binomial distrioution with the following
propurties:

1) n identical trials, ie. n roils of the pair of
dice {for this game we choose n odd)

2) each trial rasults in one of two outconeaz, 1e.
a loss {f the total on the dis=e ia not equa.
to one of the positions of the team's cnip

3) probability of success, p, in a single trial
remains the same from trial o trial, fs. the
chips are n2% raset between rolls, prchabillity
of fajlure q = 1-p

d) trials are independent, ie. the result of one :
roll does not depend on that obtained in pre-
vious rolls.

Then probability of exuactly x success !s given Yy
N .n-X
Cin,x) P 4

In this experiment we are intere. .ad in the probtabliity of ger-
ting more than hclt of the points sc win the jzme. (2,

11}
)_m Ctn, 2™ .
“*i2]

1-X

where Eﬂ is the omallest integer greater than
{n odd by choice)
Students with a knowledge of the Biaomlal probability dis-

tribution can verify that their values are close o the theoreti-
cal ones, viz.,

——ree
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3 X 3x a2 3
nasd—p=) C3,x)Ip q ~=3p%.ep

X=2

2 X 5-x 3 2 q 5
n=5-—2pPa} C(5,%) p°gq = 10p°g° + Spqrp

x=3

Positioning the chips in
starting team will have

giving for n = 1
giving.for n=273

civing for n = 5

MATURAL LANGUAGE AND MATHEMATICS
IN HUMAN EVOLUTION.

the most obvious position for a win, the

N
-

Lt
[=0

- P = 0.5833
- P = 0.6238

- P = 0.6534

BY HAROLD PADDOCK
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Nstursl Langusge snd Mathematics
in Human Evolution

Harold Paddock
Depsrtment of Lingur:.stzca
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1 University of

A psper presented
Annual Meeting o d
Educstion Study Group at Memoris
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1. The Beginning

My maio thesisl here today ia that the lster stages of
our evolution, i.e., the distinctively human satages, have been
mentsl rsther than physicsl in nature.

We slso note that there is potential danger im any
evolutionsry change for any species. The change may bring pew
opportunities or it may bring unexpected risks. Some species,
such ss the cockrosches, have played it safe by finding a nice
nicbe snd stasying put in it for a very long time. We humans have
been less "lucky" or less “semsible".

In his well-known and highly speculative book entitled The
(1976) Julisn Jsynes, s psychbologist at Princeton, tries to show
some of the gsina and losses sssocisted with the development of
human lsnguage and human consciousness. For example, he claims
that a scbizophrenic-type of condition was associsted with
consciousness and langusge in pre~historical and esarly historical
man. Io particulsr, be clsims that the experience of besring
“disembodied” voices wass very common and led to the development of
mysticism and religion, prophecy and poetry, ss well ss to such
modexn residue ss hypnotism snd mass "hysteria" (i.e., mass enthusissm
or mass ecstscy). Jaynes speculates that as lsoguage functions
bec-me localized in one bemispbere of the human brain, ususlly in
the left hemisphere, achbizopbrenic-like consciousness became much
lesa common in our species, snd religion became institutionalized
or fossilized becsuse most of us could no longer hear the voices
of the gods snd asngels, the devila and demons. Jsynes® bhold
sttempt to exp.-~in our most recent evolution is very stimulating
hut it bas been criticized for being too speculative. However, I
would like to claim that we need to be even more bold and speculative
if wve aze to understsnd the dangerous snd criticsl nature of our
most recent evolution.

Whereas Julian Jsynes attempted to link our purely human
evolution to s left-right specislizstion in the human brain I will
attempt to link it to & front-back specislization in the ssme
brains Like Jaynes, I want to link our cerebral development to
the evolution of natursl lsnguages (the things we todsy csll
Boglish, French, Chinese, etc.) but I slgo wsnt to link it to our
development of mathematical lsngusges (the things we today call
srithmetic, slgebrs, geometry, etc.). From a pragmatic point of
view, we can regard natural langusges ss the tools ve invented to
control one snother and mathemsatical langusges as the tools we
iavented to control the rest of nature.

126
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As s species we hsve resched s unique point in the
evolution of life on this earth. Becsuse of the swesome power of
mathematical langusges, ve have been sble to creste enough nuclegr
veapons_ to wipe out sll (or nearly all?) forms of life on this
plarste.? ‘Becsuse of the equally svesome pover of natursl hnzuasga.
one man in the U.S.As or the Soviet Union csn spesk the few §ngluh
or Russian words needed to begin the nuclesr holocaust. Ob\!xgugly.,.
we have replsced Jaynes® individusl schizophrenia of “primitive
wan by the collective schizophrenia of “sdvsuced"” man.

2. TIhe fiddle

When ve compsre ourselves with our closest primate cguaina
ve are immedistely struck by three msjor differences--two in our
behaviour plus one in our brsins. One major behavioural difference
is that we hsve pztursl lsngusge, defined by the famous Americsn
linguist Noam Chomsky ss a system that counects sound to mesning
yia syntsx. Syntax is that wonderful human invention which allows
us to talk or write forever despite a small vocsbulsry snd sn even
smaller intelligence! Since early humsn langusge was spoken but
not written ve have no direct evidence about its nature. . Our
oldest samples of writing reveal languages thst sre a’lrsafly highly
developed. Moreover, along with the development of vnt:..ng comes
the development of esrly mathematics®, which we csn provisionslly
define as the lsnguage of quantification. It would appesr, then,
that our mathematical ‘abilities emerged in parallel with our
language sbilities during the purely human stsges of our evolution.
With the introduction of proof into mathematics, -attributed to the
Greek known as Pythsgoras (6th century B.C.) this specislized
buman language became the major tool of science snd technology,
the second major behsvioursl festure thst distinguishes us from
our primate cousins. If we look for s third major fea.ture.thst
might underlie snd help explsin the other two, we csn fu.xd it in
the distiuctive frontsl lobes of the humsn brsin. It is Ehoae
highly developed frontal lobes thst give us our more prominent
forehesds as compsred to the receding, sloping forehesds of our
primate cousins.

But whst goes on in those frontsl lobes of ours thst
uakes us so different from all other primates, from all other
wmamnals, from sll other animals? Surprisingly enough, natursl
langusge fuuctions sre not all localized in the frontsl lobes.
In fact, much of the human frontsl lobes are made up of Ehe so-
called *silent- sress’ of the cortex. These sre sress “wh:.ch,.on
stimulation, evoke neither sensory nor motor rasponsse" (Smith
1961: 193). Smith feels that the main function of the humsn
frontal lobes is the integration of perceptions sud knowledge,
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p,rticuhrly the time-integration of sepsrste events thst gives
rise to our perceptions of csuse and effect. Smith sdmiringly
quotes sn 1824 entry in Eserson’s journsl: "Man is sn snimal thet
looks before and sfter." This remarkable insight of the then
youthf:ul Emerson explains the centrsl psrsdox of fuman nature;
thst is, it explsins why we sre sinultsneously the most rstionsl
And the most irrational of sll crestures. When we compsre ourselves
to o_th.cr wammals psychologicslly we sre struck by our peculisr
inability to enjoy the here snd now. We are forever regretting
the psst snd fuging the future. We note thst our grestest buildings
(temples, pyramids, cathedrsls) used to be erected to those very
regrets snd worries, sins snd hopes. We note too thst the insstisble
human sscrifices of the Aztecs were not motivsted by ferocity but
l3y fear: they vere mesnt to keep nature operating in the future ss
it hsd done in the pssts As our frontsl lobes snd (somewhat
lster?) our patural lsngusges developed, our instincts were graduslly
re?hccd by lesrninz and memory, by reasoning and fsith. But this
l..uc.l o intolerable burden of choice snd responsibility on the
individuale This must be the bssis of our myths sbout our expulsicn
from the Gsrden of Eden, from a state of innocence snd grsce into
8 knowledge of good snd evil. Never sgsin could wa be gs "natursl”
in our behaviour ss the other mammals seem to be.

Perhaps man’s wmost heroic snd rstional response to this
intolersble pressure wss to invent mathematics. Nstursl langusges
slresdy c.ontaiud most of the rsv materisls needed for bssic
msthemstics. Yor example, in Modern English we cau see the
prototypes of set theoryl in the vords thst linguists csll determiners

snd qugntificra (Stockwell et al. 1973: 65-160). Such words sre
underlined in the examples given below:

411 books ~— the universal set (of books)
pQ books ~~ the empry set

1 book, the book -- the unit set
any books ~~. s rgndom subset
Somg books —— s non-random subeet

etce

The pfot?:yps of the finite/infinite distinction may be seen in
onr distinction between ("finite") COUNT nouns snd ("infinite")
MASS nouns. Exsmplss are given in the table below:
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countll __MASs
a cup some sugar
a shovel sope snow
an apple some fruit
an egg some butter

More important, perhaps, was the existance of logical connectivesl2
in patural languages. In Modern English we find words such as the
following (Xemeny et al. 1966: 12):

and for addition (conjunction)

or for alternation (disjunctionm)

not for denial (negation)

if ..+ (then) for dependency (conditional)

The most important of these logical connmectives seems to be the if
(conditional) type. This is because the birth of "real" mathemstics
coincides with the explicit recognition of the methodology of
proof, asaociated abovewith the sixth century B.C, Greek philosopher,
mystic, and mathematician called Pythagoras. 4s E.T. Bell (1937:
20) hes pointed out, “Before Pythagoras it had not been clearly
reslized that proof wust proceed from assumptions. Pythagoras,

sccording to persistent trcdition, was the first Ruropean to-

ineist that the gaxioms, the postulates, be set down first inm
developing ‘geometry and that the entire development thereafter
shell proceed by applications of close deductive reasoning to the
axioms:” Pythagoras himself is.not likely to bave discovered that
the square on the hypotenuse of a right-augled triangle equals the
sum of the squares on the other two sides. This fact was apparantly
well known to the priests and land surveyors of Egypt and Babylon,
both of which Pythagoras visited. His great contribution was to
prove yhy this fect had to be trues The proof(s), using deductive
reasoning, showed that this theores had to be true for all right-
angled triangles drawvn on the surface of a plane. This was quite
different from inductive reasoning based, for exanmple, onmeasurements
taken from a hundred specific triangles. Deductive proof guaranteed
that not even the gods themselves could change this law of nature.
Hence, it gave the Greeks a confident sense of security so that
they, unlike the Asztecs, did not have to perform sacrifices in an
attempt to presexve the laws of mature,
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It was gradually realized in mathematics and the sciences
that one did not have to start with postulates that conformed to
one’s sense perceptions or ome’s common sense. This led to
developments such as geometries of spaces with more than three
dimensions. This also allowed Einstein to assume that the velocity
of light is constant for all observers, a postulate that violates
common senses But this counter-intuitive assumption allowed him
to conclude tbat E » mc“ before experimental evidenc: was available
to shov the relationship between emergy and matter in nuclear
reactions. More recently, I have read of discontinuities in space
called “strings" (Angier 1986). These may be relics left over
from'the Big Bang that are capable of bending lighc more radically
than even the mwost massive collections of "solid" or "resl" matter.
Though we cinnot ohserve such strings "directly”, we (i.e., a few
theoretical physicists) can describe themmathematically, Ultimately,
then, our understanding of the universe, at either the macrocosmic
or microcosmic extremes, fades away beyond our semses into the
abstractions of mathemstics. This means that mathemstics defines
the limits of our “knowable" universe.

Our provisional definition of mathematics above was the
language of quantification. We can now smend that definition by
calling it the language(s) of quantified iffiness.

3. The End

Let me try to recspituate. ‘:he development of the
distinctive fzontel lobes of the human brain and the concomitant
development of naturel language cut our species. free from the
control of instincts end forced it to rely on accumulated expericnce
(i.e., memory) and on the uncertainties of inductive reasoning.
Some human groups tried to solve the memory problem by developing
vriting. Some tried to solve the prohlem of inductive uncertainty
by developing methods of deductive reasoning in logic and mathemstics.
The rapid advances made in European mathematics and science in the
seventeonth and eighteeuth centuries by men like Descartes, Newton,
and Leibniz led to the remarkable optimism and self-confidence of
Western Man in the eighteenth century. W2 managed to make it
through the nineteenth century fairly safely, but the twentieth
century destroyed our faith in both men and mathematics, On the
buman side we have seen two world wars and several attempts at
genocides We have also seen about a quarter of the human race
suffering from acute starvation, chronic bunger, or crippliug
meloutritions Between the two world wars science and mathematics
also encounted their limitations. In 1927 Werner Heisenberg
published his Principle of Indeteruinacy for physics. In 1931
Xurt Gtdel showed that wmathematical systems cen never be complete,
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thst nmathematics contains insoluble problems, As William Bsrrett
wrote (1962: 39) "This mesns, in other words, thst mathematics csn
never be turned over to a gisnt computing machine; it will slusys
be unfinished, snd therefore msthemsticisns—the human buings who
construct mathematics—~will slusys be in business.® This good news
I bring you!

Where, then, csn ve g0 from here? If, ss I hsve clsimed,
natural lsnguages sud mathemsticsl lsnguages sre the two most
poverful tools, and therefore the wost dangerous tools, that we
have developed should we not approsch the teaching of both of them
with great care and csution? 1In psrticulsr, should we not be
tesching somathing sbout the origins, the development, sud the
limitstions of both nstural snd mathematical lsugusges? Sho.uld ve
not be discussing the ethics of their uses snd misuses in the
history of our spacies? Is it not just as important to teach
students about them ss it is to tesch students ta use thems I
have known many students who trested mathematics ss a kind of bl.n:k
magic—"1f you do this snd this you'll get the right answer, but don’t
ssk me why!® Would it not be better to tesch primarily for
underctandingm even if it mesnt tesching less? Wouldn't less in
£sct be more in this csse? Wouldn’: the above suggestions solve
some of the notorious problems of motivstion in mathematics students,
since it would make the vhole subject less dry snd more mesningful?
Hesven knous that we hsve seen in this century some horrific
results of blind obedience snd unreflecting fsith. We now koow
that enthusissm and will are not enough to ensure tha survival of
the human rsce. If we do not psuse to assess ourselver ve may
vell stampede over the brink like s herd of buffalo.

But wost of sll we must lesrn humility cgain.. We must
relesrn the joy of living within our lisitations, of living here
snd now, of being part of mature sgsin. After all, a stsr scientist
is s much a product of nature as is s stsrfish! Let us notdﬁ‘orget
the nobility and grubbiness of our “struggle inmto light." Ve
imagine our remote primate sncestors sttempting to ctsnd upright
on their hind legs so that they could better spot dsngeous predstors
st s ssfe distsuce. Now we hsve become the most dsngerous predstors
of sll. Unless we csn come to terms with our flsws vc sre finished.

* * * * * * * * * *
The orally presented version of this plp'er ended at this
points During the snimated question period thst folloved I discovered

that some members of the sudience wsnted me to speculste a little
sbout our possible futures. Well, then, here goes!
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I do believe thst there is some siim hope for the humsn rsce.
But it is s psinful hope becsuse it involves giving up some of our
most treasuved illusions. And, ss we have seen in South Africs snd
elsevhere, people would sometimes rather die thsn surrender their
illusious, along with the powers snd privileges supported by such
illusions, On a larger scale, ve csn observe the terrifying Stsr
Wsrs illusion in the U.S.A., wvhereby millions sre being misled
into believing that their country csn sesl itself inside s ssfe
cocoon on this tiny plsnet. There is in fsct nothing to indicste
that the Great (3psce) Wsll of Americs will provide better protection
than did the Grest (Stone) Wsll of Chiuna. The resl issue here is
s psychologicsl one—it is impossibly difficult for people to
sbsndon their illusions of ssfety sud superiority. People do
indeed veed myths ss s soutrce of motivation.

One lesson tsught us by the twentieth century is thst an
sstonishing qusntity of k.asn energyld is relessed by true belief.
A former member of the Hitler Youth wmovement once said to me:
“People just don’t understand how besutiful it wss to know thst
you were right snd everybody else wss wrong, thst you were superior
snd everbody else inferior!" Conversely, s lsck of fsith reduces
many of us to depression, inertiu, snd impot~nce. Even worse, we
note that the energetic true-believer is often morally jinferior to
the lszy know-nothing. The grest Irish poet W.B. Yests summarized
this psinful psrsdox of modern wman when he wrote thst "The best
lsck all cnviction while the worst/Are full of psssionste
intensity." Our hope, then, must lie with people who csn sct
vithout conviction, who csn fight without fsith, who can pray
without God.

Such people will require s rsre stesdiness of purpose
and s superior resistsnce to frustrstion.i’/ This is becsuse
evolution generslly proceeds not by cbcndoninf the old for the
new, but by building the new on top of the 01d.!18 How then sre we
going to acconodste the old mammals that lie behind our human
frontsl lobes? If we do NOT sccomodste them, they sre likely to
destroy us. We must give them their due becsuse ’ ithout their
evolutiouary history we would not even exist. We must therefore
lesrn to love sud sdmire our bodies snd our uaconscious minds in
the same "disinterested" wsy in which we so essily love the bodies
sud the unselfconscious minds of other snimsls, for we too sre
children of nature.

Nevertheless, our peculiar human consciousness in our
inescspsble fste. We cannot ever return to pre-consciousness,
Our only hope is to go forward to to higher levels of consciousness.
We can get s better ides of where we uight go only by lesrning
more sbout where we hsve been. There is therefore a specisl
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i ¢ shoulders of us who are describers and
:::E:::ib;?:z:::ign::u::u, vhether these languages be natural ::
wathamatical. Ve wust show our ctudents that these hngu;gc; a
the most powerful and besutiful tools ever developed byhti‘ un::
mind. Our students should therefore learn to respect their swt
vhile admiring their beauty. A:ovc fll, bo;hiue;;d ;‘;;o:nilne:i:

Se “et us join T.S.
::3:2 EZciZnh”?t?v:urtihf‘y“t::odhlcct of the tribe/And urge the
mind to aftersight and foresight."

FOOTNOTES

1 i isec ion of the paper which waa
This is a slightly ravised vera
read at th.c conference. The revisions conaist mainly of coxtended
conclusions and additional footnotess

2 i ture ve also came to comtrol
0f course, in controlling ns
one n‘nothcrccvcn -:)rc, through the development of weapous, “predatory"
economies, etc.

3 tlatively sudden end in
In addition to worrying abour our r
a nuclu: :nr ve can also worry about slow: endings from nuclear
pollution, chemical pollution, ovarpopulation, famine, atc.

4 ist R.D. Laing, vho feels that
Compare the British psychiatr
.chizoph::ﬁic behaviour is the sanest response to living in =.
insane world (Papalia and 0lds 1985: 545-6).

Shut see Hockett (1978) for « judicious weighing of the
several types of indirect evidence.

6 late on why mathamatics developed

It is interest to spacu
80 "url;"ilu our hh:::y. One reason vas no doubt the d:v:lop:u::
of writing itself, which g&ve a nev 'permsnence and “12 ; nu-o"
language. Also, according to Guillauwe (1984: 143) "llr“t nI‘f: nore
than speech, obliterates the turbulence of cogitation. . b
is true, than writing would have 1ed naturaliy to the reflect vcn: .
ressoning, and generally clearer thinking needed for utliuu: c;:
Bus perhaps more important was man’s long history of pr;c l: t‘:l-
eye coordinatiou, well recorded inm his developing ckilll ;8' 295_
making. Even more intriguing is Hockett’s hypothesis ¢1978: s
301) that the primsry medium of tuman prelanguage sonci;;ett g.
manual signs (gestures) rather than voc:l .oundlo” If l!:c et
correct, then this would help explain the Yearlinesa® of mat u; :
developmant in our specieas Hockett’s theory is u;ae.chl..ly re G\;:n.
for geometry, since a complex system of hard signais req;x1 :.
rapid and precise neuromuscular control of the hand as we
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equally rapid and precise visual perceptions
movement: in spaces Both these abilitiea
vriting and geometry,

of the resulting hand
no doubt ynlie both

7luidu the supplemental wmotor area,
localizations of language in tha human brain (
the left hemiaphere). The main apeech Centre, called
Broca’s area, is ip the (poaterior inferior part of the) frontal
lobe but the main apeach centre, called Wernicke’s
area, is found i the (posterior) temporal and parietal lobes.
This suggests that "language" perception might have preceded
"speech” production in our evolution. In other vords, it tends to
support Hockett's speculation (1978: 295-301) that the primary
unedium of human prelanguage might have been aophisticated hand
gestures rather than yocal sounds. In any case, the available
evidence indicates that ve achieved fine motor centrol over our
hands well before ve achievad siwilar ~ontrol over such vocal organs
as the lips, toague, and laryox, Note tos that ve capnot teach
4pes to speak but we can teach them to use “prelanguage” that
enploys band gestures, In addition, buman beings who are deaf can
communicate rapidly gnd fluently through the use of band signa}
systems, Moreover, it has been demonstrated that apes can learn
to use (at least part of) the Ameslan (American sign langusge)

Systea that is commonly taught to the deaf in North America (Hockect
1978: 277-82),

thsre are tvo wmain
usually stronger in

ai‘hc crucial role of the frontal lobes for humsn bebavinr
is demonstrated by the severe "side" effacts of prefrental lobotomies,
These surgical operations (co-only carried out in the forties and
fifties to relieve severe pain
patients %, apathetic shells of their former selves; some §
Percent developed convulsions; snd more tham 6 percent died"
(Papalis and 0lds 1985; 569).

9‘1‘hh claim bas been advanced by several writers in the
Past, Yor example, the Franch theoretical liaguist Gustave Guillauma
(1883-1960) claimad that language "is the pra~science of science"
and that "the loftiest speculations of science gre built on the
Systemstized representations” of language (Guillaume 1984: 146).

Guillsume also makes several insightful comparisone between mathematics
and uatural language.

1°s“, for example, Kemeny ot g1. (1966).
1 As a loca) dialectologist I gote that (singular) count

nouns in Vermacular Newfoundland English re often preceded by
i (or one of its “"variap~s" such as 4i'r or 2°r) rather than
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by & or al. Thus one commonly hesrs sentences such se: "Do you

have either shovel with youl"

1213 satursl langusges seem to be fairly equsl in the
subtleties of their LEXICAL and GYAMMATICAL distinctions but some
may be superior in thier IOGICAL distinctions. To illustrste tbis
ternary division we can bresk the English sentence “The cow drinks
if she is thiraty" into nine linguistic forms (cslled morphemss by
linguists). Of these nine, three are lexical (cow, drfak, thixat);
five are grammatical (ths, -g on the vexb, she, is, snd -y on the
adjective) sad one is logicsl (if).

Dyere I recall my ovn collision with geometry on entering
high school. The tescher provided no introducticn to the subject
st all but began sbruptly with the proof of s theorem. I vss
utterly lost for several dsys until I hsppened to resd the excellent
prefsce to our textbook. The result wes thst I "fell in love"
with geomatry and used to tutor other members of my own clssses in
that subject throughout wy high school yesrs.

Wrnie phrase is from the Eaglish poet John Clsre (1793-
1864), wknse own life epitomized the difficulties of this struggle.
See Tow Dave’s (1983) poem of empathy dedicated to Joha Clare.

150! all the pinnsers of modern depth psychology it vss
probsbly Carl Gustsy Jung (1875-1961) who hed the best insights
into this crucial problem of the “availsbility" of psychic energy.
See, for example, the summary of Jung’s theories in Woodvorth sund
Sheehan (1964). The most pervasive mentsl problea of modern times
is depression, a problem which cen be seen ss the inability to
release one’s psychic energy. This block is the mental equivelent
of physical paralysis.

16prom bis poem czzi%lad “The Second Coming®.

Vpor example, every day of my life I wsnt to malige,
uaim, or murder at lesst one other person. There is nothing
usique ghbout my feelings. Compare the Québec policemsn Sergs
Lefebvre, whto shot two of his fellow officers. He ssid that ke
turned of &« life of crime “becsuse he was frustrated with his job"
(The Globe snd Mail; Thursday, 10 July 1986, p. AB). It is certainly
true that the incrassing specialization, regulation, monotony, snd
mechanization of modern employment is s source of .grest frustrstion
tc many people. Bsrrett (1962) steributes such nihilistic urges
to the feelings of poverlessness and bopelessness that have sccompsnied
the gemeral loss of feith experienced by modern Western Man. We
note that the recent weakening of the church in the province of
Québec hss been sccompanied by a rapid rise in the rate of suicide.
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18Su Chapter 12 of Homer W. Smith (1961) and especislly
Pe 191,
19%,te that the whole thrust of modern depth psyckology
(and ke psychotherspies bssed on it) is tovsrds higher levels of
consciousness, vhich may sllov us to transcend our parsoual problems
or ¢ lesst ensble us to viev them with s tolersble or liveble
dagree of mantsl pain.

20¢r0m 1.5. Eliot’s poem “Little Gidding" in the Four Quartefs.
London: Fsber and Fsber, 1944, p. 54.

After this my deily fix of poetry, I fiud it possible to
end tbis psper on sn upbest note, or st lesst on su upbest footnote.
The most bopeful sign to me iu thst ve may now ba stsrting to see
ourselves as the protectors rsther ttan the exploiters of our
plenec. For example, the defense cspsbility of our spsce programs
could be redirected to “desling with thrests from spsce” (Lemonick
1986) such as any dangerously large asteroid found to be on a
collision course with plsnet esrth.
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GENDER FELATED DIFFERENCES IN LEARNIMG QUT-COMES

Erika Kuendiger
Un:versity of Windsor

A) Cegnitive L2arning Ouctzomes

In Northern America the topic "Gender 2nd Mathematics" was

discoverad vo be important during the early 70th. From the vary

beginning the questien To what eitend de boys outperform girls

in mathematical achievement ?" was and still 1s of particular

importance to researchers and to the public as ach:evement often

is looked upon as the one essential l=2arning outcome.

By now an sxtensive body of rasearch :s available. Depending on

the resaacher, results are summed up quite differently .e.qg.

- Bendow and Stanlay (19837) ceome to the conclusion that by age
1S there is a significant difference i1n mathematical ability

* between the sgexes. and that it 1s especially pronounced
among high-gcoring exceptionally gifted students, with boys
outnumbering girls 13 to 13

- accerding to Fennema and Carpenter (1982) very little sax
related difference es1st. 1¥ any} and

- summing up research c2rrisd out 1n nine countries.
Schildkamp-tuendiger (!°€2) =concludes that sat - related

diffarencas in achiavement were fcund <G Vvary cons:darably

both within and among countries.

The Sacond Internat:onal Matnematics Studv / SIMS provides
achi1avement rasults of students from twenty countr:z2s at the
Fopulation A lavel, that cerresponds to grade eight in Canada.
Thesz resultz have been analwvzed as to sa:. related differencas
us;ng 1ffarant approaches (gee Hanna ¥ Fuend:ger 1984 for further
deteils!.

Over:l® the =stz reveal that zex-related sch:i:avement oifferences
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mostly do not occur. If they oczur. they may he as well :r favour

cf 3irle as of boys. Significant differenc2z by country and

subtasts range between +Ii to -7% onlv .

B) Attitudinal Learning Outcomes

In trving to explain sex-related achievement differences and

course~-taking behaviaur. modells have been developed that stress

the 1i1mportancs of the attitudinal aspects of the lcarn:in

process, 1n particular the impact of gener=z2al believes about the
appropriatenaess of women being involved in mathematics (Eccles
19896, Kuandiger 1984).

The SIME contains a whole questionnaire focusing on students’
attitudes towards mathzmatics. The scale "Gender Sterectyping” is
directly relatad to the above mentioned aspect. The gr2ohs below
disolay the percentages of ex‘rem responses for each of the four

items by country. The percentages of female responses are Plottad

againet the difference of femal2 minus male percentages. It has
to be nroted that T of the 4 items ars phracad negativeiy; for
thase itams the catagories "Jdisagree" and “strangly disagree"
have bean concizer=2: coraspondingly the catagories "agrea" snd

“stronglyv agree" have been used for the ncsitively phrasad i{ta2m.

In a1l graphs the line indicating 2:treme responses of Z0% of the
bove has bzen =ntered.

With the @ei:caption of Swaziland the graphs reveal somea

as:ontlhiﬁg regularities: for all other counties the differences

between extreme recsoonszs 12 9% or more . with girls having the

mere 2:treme racsnonses. Chi 2 - tests done for each i{tem and and
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WOMAN NEEDS CAREER AS MUCH AS MAN
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sountry sanerataly reveal a significant ralationshio betwesan sex
and r2sccond pattern (o < c.o0l).

Swaziland i3 %“he zonly country i1n which bovs hold a more axir=me
position than 3irls , Meorscver, only the answerd to the :iems
"bovs have more natwral ability in math" and "bovs neec mcre math
than girls" are significantly related to zex ( » < o.c0!l).

Future inspection of the attitude scales will reveal as 2o what
degrae regularities in the attitudinal learning cutcomes appear

within :9untr7.¢s and/or betwaen countries.
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